
Private Database Queries Using Somewhat
Homomorphic Encryption

Dan Boneh1, Craig Gentry2, Shai Halevi2, Frank Wang3, and David J. Wu1

1 Stanford University - {dabo,dwu4}@cs.stanford.edu
2 IBM Research - craigbgentry@gmail.com, shaih@alum.mit.edu

3 MIT - frankw@mit.edu

Abstract. In a private database query system, a client issues queries to
a database and obtains the results without learning anything else about
the database and without the server learning the query. While previous
work has yielded systems that can efficiently support disjunction queries,
performing conjunction queries privately remains an open problem. In
this work, we show that using a polynomial encoding of the database
enables efficient implementations of conjunction queries using somewhat
homomorphic encryption. We describe a three-party protocol that sup-
ports efficient evaluation of conjunction queries. Then, we present two
implementations of our protocol using Paillier’s additively homomorphic
system as well as Brakerski’s somewhat homomorphic cryptosystem. Fi-
nally, we show that the additional homomorphic properties of the Brak-
erski cryptosystem allow us to handle queries involving several thousand
elements over a million-record database in just a few minutes, far outper-
forming the implementation using the additively homomorphic system.

1 Introduction

Enabling private database queries is an important research problem that arises
in many real-world settings. The problem can be thought of as a generalization of
symmetric private information retrieval (SPIR) [3, 8] where clients can retrieve
records by specifying complex queries. For example, the client may ask for the
records of all people with age 25 to 29 who also live in Alaska, and the server
should return these records without learning anything about the query. The
client should learn nothing else about the database contents.

In this work we explore the use of somewhat homomorphic encryption (SWHE)
[5] for the design of private database query protocols. In particular, we show that
certain polynomial encodings of the database let us implement interesting query
types using only homomorphic computations involving low-degree polynomials.
There are now several encryption schemes [1, 2] that efficiently support the nec-
essary low-degree homomorphic computations on encrypted data needed for our
constructions.

Unfortunately, being a generalization of SPIR, private database queries is
subject to all the same inherent inefficiency constraints as SPIR. To understand
these limitations let us consider the two parties involved in the basic setup: the

client and the server. The server has a database and the client has a query. We
seek a protocol that gives the client only those records that match its query
without the server learning any information about the query. In this setting the
server must process the entire database for every query; otherwise, it would learn
that the unprocessed records do not match the query. Moreover, the server has
to return to the client as much data as the number of records in the database,
or else the database would learn some information about the number of records
that match the query. Thus, for large databases, the server is forced to do a con-
siderable amount of work, rendering such systems impractical in most scenarios.

To overcome these severe limitations we modify the basic model a bit and
consider a setting in which the database server is split into two entities called the
“server” and the “proxy.” Privacy holds as long as these two entities do not col-
lude. This approach was taken by De Cristofaro et al. [4], who designed a system
that supported private evaluation of a few simple query types and demonstrated
performance similar to a non-private off-the-shelf MySQL system. However, the
architecture of De Cristofaro et al. could not handle conjunctive queries: for
instance, the client could ask for all the records with age=25 OR name=‘Bob’,
but could not ask for the records with age=25 AND name=‘Bob’. Another multi-
party architecture for performing private database queries is proposed in [13]. In
this case, the server constructs an encrypted document index which is stored on
an index server (e.g., “proxy” in our setting). To submit queries, the client inter-
acts with a query router. One of the limitations of this scheme is that for each
query, the server has to perform a computation on each record in the database,
which does not scale well to very large databases.

In this work, we develop protocols that can efficiently support conjunction
queries over large databases using an architecture similar to [4]. We rely on
somewhat homomorphic encryption schemes [1, 2] that efficiently support low-
degree homomorphic computations on encrypted data.

1.1 Security model

The functionality that our protocol implements gives the client the indices of
the records that match its query. The client should learn nothing about the data
beyond this set and the server and proxy should learn nothing about the query
beyond what is explicitly leaked.

More precisely, security for the client means that if the client issues one of two
adversarially-chosen queries with the same number of attributes, the adversarial
server cannot distinguish between them. Security for the server means that for
any fixed query and two adversarially-chosen databases for which the query
matches the same set of records, the client cannot distinguish the two databases.

In this paper, we adopt the honest-but-curious security model. Our proto-
cols can be enhanced to handle malicious adversaries using generic tools such
as [10]. It is an interesting open problem to design more efficient protocols in
the malicious settings specific to the private database queries problem. Security
holds as long as the server and the proxy do not collude. This is very similar to
the assumptions made in [13].

1.2 Our Protocol

The protocol and tools we present in this work are aimed at revealing to the
client the indices of the records that match its query, leaving it to a standard
follow-up protocol to fetch the records themselves. The approach that underlies
our protocol is to encode the database as one or more polynomials and then
manipulate these polynomials using the client’s query so as to obtain a new
polynomial whose roots are the indices of the matching records. This represen-
tation is well suited for conjunction queries, since it allows us to use techniques
similar to the Kissner-Song protocol for (multi-)set intersection [11].

In our protocol, the three parties consist of a client with a query, a proxy that
has an inverted index for the database, and a server that prepared the inverted
index during a pre-processing step and now keeps only the keys that were used
to create this inverted index. Specifically, the server keeps some “hashing keys”
and the secret key for a SWHE scheme. For every attribute-value pair (a, v) in
the database, the inverted index contains a record (tg,Enc(A(x))) where tg is a
tag, computed as tg = Hash(“a = v”), and A(x) is a polynomial whose roots are
exactly the records indices r that contain this attribute-value pair.

An example query supported by our protocol is:

SELECT ⋆ FROM db WHERE a1 = v1 AND · · · AND at = vt.

Given this query, the client (with oblivious help from the server) computes the
tags tgi = Hash(“ai = vi”) for i = 1, . . . , t and sends them to the proxy. The
proxy fetches the corresponding encrypted polynomials Ai(x) from the inverted
index, chooses random polynomials Ri(x) of “appropriate degrees” and com-
putes the encrypted polynomial B(x) =

∑t
i=1 Ri(x)Ai(x). The proxy returns

the encrypted B to the client, who again uses oblivious help from the server
to decrypt B, and then factors it to find its roots, which are the indices of the
matching records (with high probability).

One drawback of this protocol is that the proxy can tell when two different
queries share the same attribute-value pair (since the client will send the same
tag in both). In Section 3.3, we show that using quadratic-homomorphic encryp-
tion, we can mitigate this drawback somewhat, providing a privacy/bandwidth
tradeoff that the client can tune to its needs.

Bandwidth reduction and other optimizations. Another drawback of the proto-
col above is that the degree of the encrypted polynomial B returned by the
proxy (which determines the size of the response) depends on the largest num-
ber of records that match any of the attribute-value pairs in the query. For ex-
ample, if the client query was “SELECT ⋆ FROM db WHERE gender=‘male’ AND

zipcode=12345,” the response size will be at least as large as the number of
males in the database, even if there are only a few people with zipcode 12345.

In Section 3.2, we describe how to reduce this degree (and bandwidth) by
observing that the minimum-degree polynomial that encodes the intersection is
the gcd of the Ai’s. We show that the somewhat homomorphic properties of the
cryptosystem can be used to approximate the gcd. Our discussion here will lead

to a storage/homomorphism tradeoff. We present additional optimizations in
Section 3.3. In Section 3.4 we show that we can take advantage of homomorphic
batching [6, 14]) to further speed up the computation.

Implementation and performance results. We implemented our three-party pro-
tocol using both the additive homomorphic Paillier cryptosystem [12] and a
variant of Brakerski’s system [1] that supports a single multiplicative homomor-
phism. Our implementation, described in Section 4, shows that the use of mul-
tiplicative homomorphisms greatly improves performance and bandwidth over
the strictly additive implementation using Paillier.

2 Preliminaries

2.1 Homomorphic Encryption

Fix a particular plaintext space P which is a ring (e.g., P = F2). Let C be
a class of arithmetic circuits over the plaintext space P. A somewhat homo-
morphic (public-key) encryption relative to C is specified by the procedures
KeyGen,Enc,Dec (for key generation, encryption, and decryption, respectively)
and the additional procedure Eval that takes a circuit from C and one ciphertext
per input to that circuit, and returns one ciphertext per output of that circuit.

The security requirement is the usual notion of semantic security [9]: it should
be hard to distinguish between the encryption of any two adversarially-chosen
messages, even if the public key is known to the adversary. The functionality
requirement for homomorphic schemes [5] is that for every circuit π ∈ C and
every set of inputs to π, if we choose at random the keys, then encrypt all the
inputs, then run the Eval procedure on these ciphertexts and decrypt the result,
we will get the same thing as evaluating π on this set of inputs (except perhaps
with negligible probability). An important property of SWHE schemes is circuit
privacy, which means that even the holder of the secret key cannot learn from
the evaluated ciphertext anything about the circuit, beyond the output.

In this work we use “low degree” somewhat homomorphic encryption, namely
homomorphic encryption schemes relative to the class of low degree polynomials.
While our basic protocol requires only additive homomorphism, some of our
optimizations require that the scheme support polynomials of higher degree.

2.2 Polynomial Arithmetic and Set-Intersection

We provide a brief overview of the techniques underlying the Kissner-Song set-
intersection protocol [11]. Our setting is different than that considered in [11],
hence also our use of these techniques is somewhat different. Roughly, Kissner
and Song considered the case where each party has a set and they want to
compute the intersection of all their sets. In our case we have one party holding
all the sets (the server), and another party that determines which of these sets
should participate in the intersection (the client).

The idea behind the Kissner-Song protocol is to fix a large field F and rep-
resent a set S ⊂ F by a polynomial AS that has zeros in all the elements of S,
that is AS(x) =

∏
s∈S(x − s). To compute the intersection of many sets Si, we

construct a polynomial B whose zeros are the intersection of these sets. Clearly,
if some point s ∈ F is contained in all the sets Si, then ASi(s) = 0 for all i,
and therefore, if we compute B as a linear combination of the ASi ’s, then also
B(s) = 0. On the other hand, if ASi(s) ̸= 0 for some i and B is a random linear
combination of the ASi

’s, then with high probability B(s) ̸= 0.
The Kissner-Song approach is therefore to choose the field F sufficiently larger

than the “universe” U of valid points (e.g., we have Si ⊆ U (F), then take
B to be a random linear combination of the ASi ’s, and show that with high
probability, the only roots of B that come from U are the ones corresponding
to the intersection of the Si’s. The following lemma is easy to prove using the
above arguments:

Lemma 1. Fix a finite field F and a “universe” U ⊂ F, let S1, . . . , St ⊆ U be
subsets of the universe and for each Si, let ASi(x) =

∏
s∈Si

(x− s).

(i) Let ρ1, . . . , ρt−1 be random scalars in F, let A′(x) = ASt +
∑

i<t ρiASi(x),
and denote the set of roots of A′ by SA′ . Then Pr[SA′ ∩ U =

∩
i Si] ≥

1− |U |/|F|.
(ii) Let R1, R2 be random polynomials in F[x] of some given degrees d1, d2 ≥ 0.

Let B(x) = A1(x)R1(x) + A2(x)R2(x), and SB be the set of roots of B.
Then Pr[SB ∩ U = S1 ∩ S2] ≥ 1− |U |/|F|.

The harder part is to show that the random linear combination B does
not leak information on the ASi

’s beyond their intersection. For this to hold,
the coefficients of the linear combination cannot be scalars in F, they must be
themselves polynomials of high-enough degree. Specifically, we use the following
lemma which is a slight generalization of [11, Lemma 1]:

Lemma 2. Fix a finite field F and two co-prime polynomials A1(x), A2(x) ∈
F[x], of degrees d1 = deg(A1) and d2 = deg(A2). Also, fix some integer D1 ≥
d1 − 1, and let D2 = d2 +D1 − d1. Next, choose uniformly at random a degree-
D2 polynomial R1(x) ∈ F[x] and a degree-D1 polynomial R2(x) ∈ F[x] and set
B(x) = A1(x) ·R1(x)+A2(x) ·R2(x). Then, B(x) is distributed uniformly among
all the polynomials of degree d1 +D2 = D1 + d2 over F.

Proof. Omitted due to space constraints. See appendix of the full version. ⊓⊔
Corollary 1. Fix a finite field F and two polynomials A1(x), A2(x) ∈ F[x], with
degrees d1 and d2, respectively. Let G(x) = gcd(A1(x), A2(x)). Also fix some
integer D1 ≥ d1 − 1, and let D2 = d2 + D1 − d1. Then choosing uniformly
at random a degree-D2 polynomial R1(x) ∈ F[x] and a degree-D1 polynomial
R2(x) ∈ F[x] and setting B(x) = A1(x) · R1(x) + A2(x) · R2(x), the polynomial
B(x) is distributed uniformly among all the polynomials of degree d1+D2 over F
which are divisible by G(x).

Proof. Follows by applying Lemma 2 to the co-prime polynomials A′
1(x) =

A1(x)/G(x) and A′
2(x) = A2(x)/G(x). ⊓⊔

Intersection of two sets. If AS1(x), AS2(x) are polynomials that represent sets
S1, S2, respectively, then gcd(AS1 , AS2) is the polynomial that represents their
intersection. In this case, Corollary 1 says that setting B = AS1R1 +AS2R2 for
R1, R2 of “appropriate degrees” yields a random multiple of G(x) that leaks “no
information” about A1, A2 beyond their intersection and the sum of their sizes.1

Intersection of many sets. In this setting, we are given the polynomials ASi ,
i = 1, 2, . . . , t, with di = deg(ASi). Without loss of generality, let dt be the
largest degree. We first choose random scalars, ρi ∈ F for i = 2, . . . , t, and
compute the degree-dt polynomial A′(x) = ASt(x) +

∑
2≤i<t ρiASi(x). Then we

choose two random polynomials R1(x) of degree dt−1 and R′(x) of degree d1−1
and set B(x) = AS1(x)R1(x) +A′(x)R′(x).

Clearly gcd(AS1 , AS2 , . . . , ASt) divides gcd(AS1 , A
′). Also Lemma 1 (applied

to U = S1 and S′
i = Si ∩ S1) implies that with probability at least 1 − d1/|F|

we have gcd(AS1 , A
′) = gcd(AS1 , AS2 , . . . , ASt). It follows from Corollary 1 that

when the size of F is super-polynomially larger than d1, the distribution of B(x)
is statistically close to uniform over the degree-(d1+dt−1) polynomials divisible
by gcd(AS1 , AS2 , . . . , ASt).

Reducing the degree. To reduce the degree of the resulting polynomials, in-
stead of using A′(x) =

∑
i ρiASi(x), we compute the polynomial A′′(x) =

A′(x) mod AS1(x) of degree d1 − 1. Choosing at random R1(x) of degree d1 − 1
and R′′(x) of degree d1, we set B(x) = A1(x)R1(x) + A′′(x)R′′(x). Correctness
and secrecy follow from the observation that since A′′(x) = A′(x) mod AS1(x),
gcd(AS1

, A′′) = gcd(AS1
, A′).

3 The Three-Party Protocol

In this section, we describe the three-party setting that we adopt in this paper
(which is similar to the “Isolated-Box” architecture in [4]). In this architecture,
in addition to the client and server there is a third party, a proxy, that holds an
“encrypted” inverted index of the database records. For each attribute-value pair
in the database, the proxy holds a tag that identifies the pair, along with a set
of record indices that contain the pair. Specifically, for each attribute-value pair
in the database (e.g., “name=Joe”), the inverted index contains the following:⟨

PRFs(“name=Joe”), encrypted-set-of-record-indices
⟩

(1)

where the PRF key s is held by the server and the set of record indices contains
all the records where the attribute “name” has value “Joe.”

When the client wants to fetch the records with name=Joe, it engages in a pro-
tocol for oblivious-PRF-evaluation with the server and learns the tag PRFs(“name=Joe”).
It then engages in a protocol with the proxy to learn the set of indices corre-
sponding to this tag. To make a conjunction query, the client sends multiple tags
to the proxy and at the end of the protocol, learns the records in the intersection
of all the sets.
1 We can pad to a pre-determined degree to hide the information about the sizes.

3.1 Our Basic 3-Party Protocol

The task of computing conjunctions is closely related to set intersection. Indeed,
an attribute-value pair (e.g., “name=Joe”) implicitly defines a set of records that
contains this pair. The proxy needs to send the intersection of all these sets to
the client, without learning anything about the sets themselves.

Using the technique of Kissner and Song described in Section 2.2, we repre-
sent each set as a polynomial whose roots are the elements of that set. Thus,
in the row of the inverted index with tag PRFs(“name=Joe”), we do not store
the set of indices S containing this attribute-value pair, but rather the poly-
nomial AS(x) =

∏
s∈S(x − s), encrypted using our SWHE scheme. Note that

the SWHE scheme is used to encrypt each coefficient of the polynomial AS . To
issue a conjunctive query (say, “name=Joe” and “age=28”), the client does the
following:

1. Use oblivious-PRF-evaluation to obtain from the server the tags tg1, . . . , tgt
corresponding to each of the attribute-value pairs. The client sends all the
tags to the proxy.

2. The proxy collects the encrypted polynomials Ai corresponding to the tags
tgi and then computes a polynomial B(x) as a “random linear combination”
of the Ai(x)’s:
(i) Letting di = deg(Ai) and assuming that the Ai’s are ordered by de-

gree (d1 ≤ d2 ≤ · · · ≤ dt), the proxy first chooses random scalars
ρ2, . . . , ρt−1 and computes the degree-dt polynomial A′(x) = At +∑

2≤i<t ρiAi(x).
(ii) Then the proxy chooses two random polynomials R1(x) of degree dt−1

and R′(x) of degree d1 − 1 and sets B(x) = A1(x)R1(x) +A′(x)R′(x).
The proxy uses the additive homomorphism of the scheme to compute
the encrypted coefficients of the polynomial B from the encrypted co-
efficients of the Ai’s and the plaintext ρi, R1 and R′. The proxy sends
the encrypted B(x) to the client.

3. The client and server engage in another protocol to decrypt B(x) (en-
crypted under the server’s key). At the conclusion of this protocol, the client
knows B(x) and the server knows nothing.

4. The client factors B(x) and finds its roots, which are the indices of the
records that the client is interested in. While B(x) may have superfluous
roots, we use a large-enough space so that with high probability these roots
are identified as invalid and discarded.

Once the client knows the indices of the records that match its query, it can
use PIR/ORAM protocols to fetch the encrypted records, then engage in another
oblivious decryption protocol with the server to decrypt them.

Security. Secrecy against an honest-but-curious proxy is ensured by the fact
that the tags do not leak to the proxy anything about the attribute-value pairs
that were used to generate them (because the tag-generation function is pseudo-
random), and the encrypted polynomials do not leak anything due to the se-
mantic security of the SWHE cryptosystem. Note that our security model only

ensures privacy for a single query. If the client issues multiple queries then the
proxy may learn relations between these queries. We briefly discuss multiple
queries in Section 3.3.

Secrecy against an honest-but-curious client follows from Corollary 1 and the
circuit-privacy property of the SWHE scheme. Specifically, Corollary 1 implies
that the polynomial B by itself does not leak anything about the Ai’s beyond
their intersection (and the size d1 + dt), and circuit-privacy of the cryptosystem
means that the evaluated ciphertext encrypting B does not leak anything else.

3.2 Reducing Communication via Modular Reduction

The communication complexity of the basic solution above is determined by
the degree of the polynomial B, which is tied to the size of the largest set in
the intersection (e.g., the highest degree dt). Using some more homomorphic
operations, we can make the degree of B as low as 2d1−1, namely it can be tied
to the size of the smallest set S1 rather than the largest set St.

To this end, we use the optimization from Section 2.2, where instead of using
A′(x) = At(x)+

∑
2≤i<t ρiAi(x), the proxy uses A′′(x) = A′ mod A1(x). We note

that given the encrypted coefficients of both the polynomial A′(x) of degree dt
and the monic polynomial A1(x) of degree d1, we can homomorphically reduce
A′ modulo A1 as long as our SWHE scheme supports formulas of degree dt−d1.
To see this, notice that given the encryption Enc(α′

dt
) of the top coefficient of A′,

we can reduce the degree of A′ by one by setting A′′ = A′ −α′
dt
·A1(x) · xdt−d1 .

Clearly the degree of A′ is one less than that of A′ and it satisfies A′′ ≡ A′

(mod A1).
However, reducing moduloA1 can be done using more limited homomorphism

if the proxy is given not just the encryption of A1 but also some other ciphertexts.
For example, suppose the proxy is given the encryption Enc(xi mod A1) for i =
d1 + 1, d1 + 2, d1 + 3, . . . , dt. Then given the encryptions of all the coefficients
of A′, Enc(α′

0), . . . ,Enc(α
′
dt
), the proxy computes the encryption of the reduced

polynomial as Enc(A′ mod A1) = Enc(
∑dt

i=0 α
′
i(x

i mod A1)). Since the proxy has
the encryptions of all the α′

i’s and the (xi mod A1)’s, then it is enough if our
SWHE scheme supports only quadratic formulas, such as [7, 1].

The above two procedures for computing polynomial modular reduction rep-
resent two extremes on the storage/homomorphism tradeoff. Perhaps a better
tradeoff can be obtained by storing only logarithmically many encrypted poly-
nomials corresponding to A1, and using a SWHE scheme supporting formulas
of degree O(log dt). Denoting ∆ = dt − d1, the proxy is given the encryptions

Enc(xd1+2i mod A1) for i = 0, 1, . . . , ⌈log∆⌉. Given these encryptions and the
encryptions of the coefficients of A′, reducing A′ modulo A1 homomorphically
can be done in ⌈log∆⌉ steps. See appendix of full version for more details.

3.3 Other Optimizations and Variations

Returning two polynomials. The most expensive operation that the client per-
forms in our protocol is factoring the polynomial B. Even with the bandwidth

reduction trick from above, its degree is still twice as large as the degree of the
smallest Ai, which can be much higher than the degree of the gcd of the Ai’s.

A simple trick that can be used here is to have the proxy send to the client
two encrypted polynomials. Namely, after the proxy computes the polynomial
A′ in Step 2(i), it repeats Step 2(ii) twice, that is, choose polynomials R1, R

′

and S1, S
′ and set B(x) = A1(x)R1(x) + A′(x)R′(x) and C(x) = A1(x)S1(x) +

A′(x)S′(x). The proxy sends the encrypted B and C to the client, who engages in
an oblivious decryption protocol with the server to decrypt both. Then the client
computes the gcd of the two polynomials B and C, and with high probability
this polynomial is the gcd of all the Ai’s, which hopefully has much lower degree
than B,C themselves.

Obscuring relations between different queries. One problem with the basic solu-
tion above is that the client sends to the proxy all the tags tgi = PRFs(attri = valuei),
so the proxy can tell when a given tgi is used in multiple queries. This problem
can be mitigated by adding spurious tags to the request, but without changing
the result of the final intersection. The idea is to have the client send to the
proxy pairs (tgi, si) where tgi is a tag for an attribute-value pair and si is an
encryption of a bit σi ∈ {0, 1}. By using a quadratic-homomorphic encryption
scheme (such as [7]), the proxy can choose its randomizers Ri(x) and compute
an encryption of the polynomial B(x) =

∑
i Ri(x) · (σi · Ai(x)). The client will

send some spurious tags tgi with σi = 0, thus obscuring the tags that it is really
interested in, but without changing the result of the intersection.

3.4 Speedups via Batching

One appealing optimization that applies to the protocol in this paper is to use
“batch homomorphic encryption” where a single ciphertext represents a vector
of encrypted values and a single homomorphic operation on two such ciphertexts
applies the homomorphic operation component-wise to the entire vector. This
way, for the cost of a single homomorphic operation we get to compute on an
entire vector of encrypted plaintexts. This is a cryptographic analogue of the
Single Instruction Multiple Data (SIMD) architecture and is supported by recent
fully homomorphic encryption systems [1, 14, 2, 6].

We take advantage of batching in our context by splitting the database into
a few small partial databases and running the same query against all parts
in parallel. When using the techniques from [14, 2, 6] (for the ring-LWE-based
homomorphic encryption) we can pack in each ciphertext ℓ different plaintext
elements (where ℓ is typically in the range of 500-10,000). We can then break an
r-record database into ℓ smaller databases, each with ≈ r/ℓ records.

In the three-party setting, with each tag tgi = PRFs(“attri = vali”), we keep
encryptions of ℓ different polynomials, one for each part of the database. These
are placed in the ℓ “plaintext slots” of the ciphertexts, so the number of cipher-
texts that needs to be kept is only as large as the degree of the largest of these
ℓ polynomials. (If the records are split between the parts uniformly, then we
expect this degree to be roughly a factor of ℓ smaller than it would be if we keep

everything as a single database.) A client query will still be processed in the
exact same way as in the previous sections, but now the client will get back from
the proxy not a single encrypted polynomial B(x) but ℓ different polynomials
Bj(x), one for each of plaintext slot. The client gets the decryption of all these
Bi’s from the server, factors them all, and takes the union of their roots to be
the set of records that match the query.

4 Implementing the Three-Party Protocol

We implemented the basic three-party protocol from Section 3 using both the
Paillier cryptosystem [12] and a variant of Brakerski’s leveled homomorphic sys-
tem [1]. Because the Paillier cryptosystem only supports additive homomor-
phism, we can only support the basic protocol, without the batching (Section 3.4)
and modular reduction optimizations (Section 3.2). In contrast, Brakerski’s lev-
eled homomorphic scheme supports a bounded number of homomorphic addi-
tions and multiplications. To demonstrate the effectiveness of our optimizations
we conducted a set of experiments with batching and modular reduction us-
ing Brakerski’s cryptosystem. Since most of our described optimizations pertain
specifically to the problem of oblivious set intersection, we focus our experimen-
tal analysis on this portion of the three-party protocol.

In this section, we show that support for batching (Section 3.4) in Brakerski’s
system is critical for evaluating large queries. Specifically, for large queries, the
Paillier system becomes intractable, leaving the Brakerski system as the only
suitable option. We also demonstrate that the modular reduction optimization
(Section 3.2) yields substantial reductions in both computation time and network
bandwidth on queries where there is a large disparity in the sizes of the record
sets corresponding to the tags. In one case, we show a 4X improvement in both
processing time and bandwidth using modular reduction.

4.1 Homomorphic Encryption Schemes

Paillier cryptosystem. Recall that the Paillier cryptosystem works over Z∗
n2 for

an RSA-modulus n of unknown factorization. The scheme has plaintext space
P = Zn and ciphertext space Z∗

n2 . The scheme is additively homomorphic, with
homomorphic addition implemented by multiplying the corresponding cipher-
texts in Z∗

n2 . Similarly, we can homomorphically multiply a ciphertext c ∈ Z∗
n2

by a constant a ∈ Zn by computing ca mod n2.

Brakerski’s leveled homomorphic cryptosystem. We also use the ring-LWE-based
variant of Brakerski’s scale-invariant homomorphic cryptosystem [1]. Specifi-
cally, our implementation operates over polynomial rings modulo a cyclotomic
polynomial. Let Φm(x) denote the mth cyclotomic polynomial. Then, we work
over the ring R = Z[x]/Φm(x). Specifically, we take our plaintext space to be
P = Rp = Zp[x]/Φm(x) and our ciphertext space to be Rq = Zq[x]/Φm(x) for

Experiment Ring Modulus
Φm

Plaintext Slots
φ(m)

Plaintext
Modulus p

Ciphertext
Modulus q

NoMR m = 5939 φ(m) = 5938 p = 1000032577 log2 q = 181
MR, MRNoKS m = 7867 φ(m) = 7866 p = 1000021573 log2 q = 238

Table 1. Parameters used to achieve 128-bit security in the Brakerski system. The
false positive rate is fixed at 10−3.

some q > p. In this scheme, our secret keys and ciphertexts are vectors of ele-
ments in Rq. Homomorphic addition is implemented by adding the corresponding
ciphertexts. We can multiply a ciphertext c by a constant a ∈ Rp by computing
ac. Finally, homomorphic multiplication is performed using a tensor product.
Note that when we homomorphically multiply two ciphertexts, the resulting
ciphertext is encrypted under a tensored secret key. Using a technique called
key-switching, we can transform the product ciphertext into a regular ciphertext
encrypted under the original secret key. We refer readers to [1] for further details.

As noted in Section 3.4, one of the main advantages of using a ring-LWE-
based homomorphic scheme is the fact that we can pack multiple plaintext mes-
sages into one ciphertext using a technique called batching. To use batching we
partition a database with r records into ℓ separate databases, each containing
approximately r/ℓ records. Correspondingly, the the degrees of the polynomials
in each database are reduced roughly by a factor of ℓ. In our implementation,
ℓ ≥ 5000, so this translates to a substantial improvement in performance.

We now consider a choice for the plaintext modulus p for use in the Brak-
erski scheme. From Lemma 1, we have that the probability of a false positive
(mistaking an element not in the intersection to be in the intersection) is given
by |U | / |Fp|. If we tolerate a false positive rate of at most 0 < λ < 1, then we
require that |Fp| ≥ 1

λ |U | = r
λ , where r is the number of records in the database.

Additionally, to maximize the number of plaintext slots, we choose p such that
p = 1 (mod m). To summarize, we choose our plaintext modulus p such that
p = 1 (mod m) and p ≥ r

λ .

4.2 Experimental Setup

We implemented the three-party protocol using both the Paillier and Brakerski
cryptosystems as the underlying homomorphic encryption scheme. Our imple-
mentation was done in C++ using the NTL library over GMP. Our code was
compiled using g++ 4.6.3 on Ubuntu 12.04. We ran all timing experiments on
cluster machines with multicore AMD Opteron processors running at 2.1 GHz.
The machines had 512 KB of cache and 96 GB of available memory. All of our
experiments were conducted in a single-threaded, single-processor environment.
Memory usage during the computation generally stayed below 10 GB.

In the Paillier-based scheme, we used a 1024-bit RSA modulus for all of our
experiments. For the Brakerski system, we chose parameters m, p, q to obtain

128-bit security and a false positive rate of λ = 10−3. See appendix of full ver-
sion for derivation of parameters. Since the Brakerski system supports both the
batching and modular reduction optimizations described in Section 3.4 and Sec-
tion 3.2, respectively, we considered three different experimental setups to assess
the viability of these optimizations. Below, we describe each of our experiments.
The parameters used in our SWHE scheme for each setup are given in Table 1.

NoMR: Brakerski scheme without modular reduction. In the NoMR setup, we just
used the batching capabilities of the Brakerski system. Note that this setup only
required homomorphic addition, and not homomorphic multiplication, and thus,
allowed us to use smaller parameters in the Brakerski system.

MR: Brakerski scheme with modular reduction. In the MR setup, we considered
the modular reduction optimization from Section 3.2. In the final step of the
three-party protocol, the proxy computes the polynomial B(x) = A1(x)R1(x) +
A′(x)R′(x) where deg(A1) ≤ deg(A′). When we perform modular reduction, we
compute A′(x) (mod A1(x)) followed by B(x) (mod A1(x)). This optimization
reduces the degree of the polynomial B(x) that the proxy sends to the client as
well as the cost of the computation of B(x). To perform this optimization, the
SWHE scheme must support at least one multiplication, thus requiring larger pa-
rameters for security. Consequently, each homomorphic operation takes longer,
but since we are performing fewer operations overall, the modular reduction can
yield substantial gains for certain queries. Due to the cost of homomorphic mul-
tiplications, we just consider the case of doing a single multiply.

MRNoKS: Brakerski scheme with modular reduction but without key switching.
When we homomorphically multiply two ciphertexts in the Brakerski system, we
obtain a tensored ciphertext (e.g., a higher-dimensional ciphertext) encrypted
under a tensored secret key. Normally, we perform a key-switching operation
that transforms the tensored ciphertext into a new ciphertext encrypted under
the normal secret key. If left unchecked, the length of the ciphertexts grows expo-
nentially with the number of successive multiplications. Thus, the key-switching
procedure is important for constraining the length of the ciphertexts. In our ap-
plication, we perform a single multiplication, and so the key-switching procedure
may be unnecessary. Since the key-switching operation has non-negligible cost,
we can achieve improved performance at the expense of slightly longer cipher-
texts (and thus, increased bandwidth) by not performing the key switch.

Query type. In each of our experiments, we operated over a database with 106

records and performed queries consisting of five tags. Let d1 ≤ d2 ≤ · · · ≤ d5
denote the number of elements associated with each tag tg1, . . . , tg5. We profiled
our system on two different sets of queries: balanced queries and unbalanced
queries. In a balanced query, the number of elements associated with each tag
was approximately the same: d1 ≈ d2 ≈ · · · ≈ d5.

Q
u

e
ry

 T
im

e
 (

m
in

u
te

s)
1

10

100

1000

10000

20 200 2000 20000 200000

Approximate Number of Records Associated with Each Tag

MR: With Modular Reduc!on (Brakerski)

Paillier: Paillier System

MRNoKS: With Modular Reduc!on without Key Switching (Brakerski)

NoMR: No Modular Reduc!on (Brakerski)

Fig. 1. Timing tests on balanced queries using the Paillier cryptosystem and the three
setups of the Brakerski cryptosystem described in Section 4.2. All queries were con-
ducted over a database consisting of 106 records. Each query consisted of five tags;
the approximate number of records associated with each tag is indicated on the plot
above. Note that the running time with Paillier became too large when the database
had more than 2,000 records per tag and as a result the Paillier line stops at 2,000.

In an unbalanced query, the number of elements associated with each tag
varies significantly. Specifically, d1 is at most 5% of d5. As discussed in Section 1,
queries like these where we compute an intersection of a large set with a much
smaller set are very common and so, it is important that we can perform such
queries efficiently. For each query, we measured the computation time as well as
the total network bandwidth required by each of our setups. Note that due to
the poor scalability of the Paillier system, we were not able to perform the full
set of experiments using the Paillier cryptosystem.

4.3 Experimental Results

Balanced queries. In the first set of experiments, we considered the run-time
and bandwidth requirements for performing balanced queries. In particular, we
constructed a database with 106 records and where each tag in the database was
associated with approximately d records (for d ranging from 100 to 200,000).
We executed these queries on the four different setups described above (Paillier,
NoMR, MR, and MRNoKS). Our timing and bandwidth measurements are sum-
marized in Fig. 1 and Fig. 2. Because the query execution time dominated the
cost of the computation, we just present the cost of performing the query.

We compare the computational cost and network bandwidth required by
each of our setups described in Section 4.2 for evaluating balanced queries. From
Fig. 1, we see that the Paillier system is faster for small queries involving sets
of several hundred records. This is due to the simplicity and low computational
overhead of the Paillier cryptosystem compared to Brakerski’s leveled homomor-
phic cryptosystem. However, the run time scales quadratically with the size of the
underlying sets, so for queries with over 2,000 elements, the Paillier system be-
comes completely impractical. While the performance using Brakerski’s system

20 200 2000 20000 200000

B
a

n
d

w
id

th
 (

M
B

)

Approximate Number of Records Associated with Each Tag

70

60

50

40

30

20

10

0

MR: With Modular Reduc!on (Brakerski)

Paillier: Paillier System

MRNoKS: With Modular Reduc!on without Key Switching (Brakerski)

NoMR: No Modular Reduc!on (Brakerski)

Fig. 2. Bandwidth measurements on balanced queries using the Paillier cryptosystem
and the three different setups of the Brakerski cryptosystem. Same setup as in Fig. 1.

also scales quadratically with the number of records, batching allows us to split

the main database D into ℓ slices, each with approximately |D|
ℓ records. Thus,

we were able to reduce the degree of the polynomials we needed to multiply by
a factor of approximately ℓ > 5000. In turn, batching allows for approximately
a factor of ℓ increase in the number of records the system could handle. Using
Brakerski’s system, we are able to handle queries for tags consisting of 200,000
records. These results also indicate that in terms of both bandwidth and compu-
tation time, the modular reduction optimization from Section 3.2 is ineffective
when we have balanced queries. This is because the modular reduction optimiza-
tion is designed for cases where there is a large disparity between the sizes of
the smallest and largest sets. When the size of each set is approximately equal,
the larger parameters needed to support the modular reduction optimization
coupled with the computational cost of performing the optimization resulted in
worse performance overall. Thus, for balanced queries, it is advantageous to just
use the Brakerski system without additional optimizations.

Unbalanced queries. We also considered the case where the underlying sets are
unbalanced, that is, cases where the smallest set contains at most 5% of the
number of records in the largest set. Due to the poor scalability of the Paillier
system, we only performed the queries using our three Brakerski setups. Our
results are summarized in Fig. 3 and Fig. 4.

When working with unbalanced queries, the modular reduction optimization
(with or without key switching) reduces the necessary bandwidth. Despite the
fact that each individual ciphertext is larger when we perform modular reduction
(due to the larger parameters in the Brakerski system), the polynomials also
have much lower degree (degree given by 2d1 − 1 rather than d1 + d5 − 1). The
larger the difference between d1 and d5, the more substantial the bandwidth
reduction. Furthermore, performing modular reduction also translated to faster
query processing. Recall that in the last step of the proxy computation, the
proxy multiplies a polynomial of degree d5−1 with one of degree d1−1. If we use

NoMR: No Modular Reduc�on MR: With Modular Reduc�on

MRNoKS: With Modular Reduc�on without Key Switching

Query 1
(2.5K, 2.5K, 5K, 10K, 50K)

Query 2
(10K, 20K, 25K, 50K, 200K)

Query 3
(2.5K, 2.5K, 5K, 5K, 350K)

Q
u

e
ry

 T
im

e
 (

m
in

u
te

s)

0

20

40

60

80

100

120

140

160

180

32.4

157.6

124.1

29.0

73.9

47.2

23.2

58.4

26.5

Fig. 3. Timing tests on unbalanced queries using the three different setups of the Brak-
erski system (described in Section 4.2). All queries were conducted over a database
consisting of 106 records. Each query consisted of five tags; the number of records
associated with each tag is shown in parenthesis in the corresponding graphs.

NoMR: No Modular Reduc�on MR: With Modular Reduc�on

MRNoKS: With Modular Reduc�on without Key Switching

Query 1
(2.5K, 2.5K, 5K, 10K, 50K)

Query 2
(10K, 20K, 25K, 50K, 200K)

Query 3
(2.5K, 2.5K, 5K, 5K, 350K)

B
a

n
d

w
id

th
 (

M
B

)

0

5

10

15

20

25

30

35

7.9

19.9

29.4

4.7
7.9

4.7
6.8

11.5

6.8

Fig. 4. Bandwidth measurements on unbalanced queries using the three different setups
of the Brakerski system. Same setup as in Fig. 3.

modular reduction, the multiplication is instead performed on two polynomials
of degree d1 and d1 − 1. From our experiments, we see that when d1 = 10,000
and d5 = 200,000 (Query 2), the MRNoKS setup is about 2.7 times faster. When
this gap is even larger with d1 = 2,500 and d5 = 350,000 (Query 3), we observe
that the MRNoKS setup is almost 4.7 times faster than the NoMR system. Even
with key switching in this case (Query 3), modular reduction still reduces the
run time by a factor of 2.6. In both MR and MRNoKS, the bandwidth on this
very unbalanced query is reduced by more than a factor of 4 compared to the
baseline without the modular reduction optimization.

To summarize, performing the modular reduction optimization is greatly
beneficial, both in terms of computation time as well as in terms of network
bandwidth, when there is a large difference between the sizes of the underlying
sets. As we have demonstrated, it is possible to achieve over a 4X improvement
in both computation time and network bandwidth on certain queries, making
modular reduction a very viable optimization in practice.

5 Conclusion

This paper presents new protocols and tools that can be used to construct a
private database query system supporting a rich set of queries. We showed how
a polynomial representation of the database allows for efficient evaluation of pri-
vate conjunction queries. The basic schemes only require an additively homomor-
phic system like Paillier, but we showed that significant performance improve-
ments can be obtained using a stronger homomorphic system that supports both
homomorphic additions and a few homomorphic multiplications. Our experi-
ments quantify this improvement showing a real-world example where lattice-
based homomorphic systems can outperform their factoring-based counterparts.

Acknowledgements: This work is supported by IARPA via DoI/NBC contract
number D11PC20202. The U.S. Government is authorized to reproduce and
distribute reprints for Governmental purposes notwithstanding any copyright
annotation thereon. Disclaimer: The views and conclusions contained herein are
those of the authors and should not be interpreted as necessarily representing
the official policies or endorsements, either expressed or implied, of IARPA,
DoI/NBC, or the U.S. Government.

References

1. Brakerski, Z.: Fully homomorphic encryption without modulus switching from clas-
sical GapSVP. In: CRYPTO (2012)

2. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: Fully homomorphic encryption
without bootstrapping. In: Innovations in ITCS’12 (2012)

3. Chor, B., Kushilevitz, E., Goldreich, O., Sudan, M.: Private information retrieval.
J. ACM 45(6), 965–981 (1998)

4. Cristofaro, E.D., Lu, Y., Tsudik, G.: Efficient techniques for privacy-preserving
sharing of sensitive information. In: Trust and Trustworthy Computing (2011)

5. Gentry, C.: A fully homomorphic encryption scheme. Ph.D. thesis, Stanford Uni-
versity (2009), crypto.stanford.edu/craig

6. Gentry, C., Halevi, S., Smart, N.P.: Fully homomorphic encryption with polylog
overhead. In: EUROCRYPT (2012)

7. Gentry, C., Halevi, S., Vaikuntanathan, V.: A simple BGN-type cryptosystem from
LWE. In: EUROCRYPT (2010)

8. Gertner, Y., Ishai, Y., Kushilevitz, E., Malkin, T.: Protecting data privacy in
private information retrieval schemes. In: STOC ’98. pp. 151–160 (1998)

9. Goldwasser, S., Micali, S.: Probabilistic encryption. Journal of Computer and Sys-
tem Sciences 28(2), 270–299 (April 1984)

10. Ishai, Y., Prabhakaran, M., Sahai, A.: Founding cryptography on oblivious transfer
- efficiently. In: CRYPTO. pp. 572–591 (2008)

11. Kissner, L., Song, D.X.: Privacy-preserving set operations. In: CRYPTO (2005)
12. Paillier, P.: Public-key cryptosystems based on composite degree residuosity

classes. In: Proc. of EUROCRYPT’99. pp. 223–238 (1999)
13. Raykova, M., Cui, A., Vo, B., Liu, B., Malkin, T., Bellovin, S.M., Stolfo, S.J.:

Usable, Secure, Private Search. IEEE Security and Privacy (October), 53–60 (2012)
14. Smart, N.P., Vercauteren, F.: Fully homomorphic SIMD operations. Manuscript

at http://eprint.iacr.org/2011/133 (2011)

