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ABSTRACT
Regulations and policies regarding Electronic Health Infor-
mation (EHI) are increasingly complex. Federal and State
policy makers have called for both education to increase
stakeholder understanding of complex policies and improved
systems that impose policy restrictions on access and trans-
mission of EHI. Building on prior work formalizing privacy
laws as logic programs, we prove that for any privacy policy
that conforms to patterns evident in HIPAA, there exists a
finite representative hospital database that illustrates how
the law applies in all possible hospitals. This representative
illustrative example can support new education, new policy
development, and new policy debugging tools. Addressing
the need for secure transmission of usable EHI, we show how
policy formalized as a logic program can also be used to au-
tomatically generate a form of access control policy used in
Attribute-Based Encryption (ABE). This approach, testable
using our representative hospital model, makes it possible
to share policy-encrypted data on untrusted cloud servers,
or send strategically encrypted data across potentially inse-
cure networks. As part of our study, we built a prototype to
secure Health Information Exchange (HIE), with automati-
cally generated ABE policies, and measure its performance.

Categories and Subject Descriptors: K.4.1 [Privacy]:
Policy Compliance Automation; J.3 [Medical Informa-
tion Systems]: Trustworthy and Secure Infrastructure for
Health Information Systems

General Terms: Security, Legal Aspects, Algorithms

Keywords: Privacy Policy, Compliance, EHR, ABE

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IHI’12, January 28–30, 2012, Miami, Florida, USA.
Copyright 2012 ACM 978-1-4503-0781-9/12/01 ...$10.00.

1. INTRODUCTION
Emerging Electronic Health Record (EHR) systems hold

great promise for empowering patients and ensuring more ef-
fective delivery of health care. Among governments, health-
care providers, and insurance companies, there is also grow-
ing awareness of the advantages of Health Information Ex-
change (HIE) in promoting more streamlined and effective
patient treatment, payment, research data use, law enforce-
ment, bioterrorism response and action, and government
oversight. The complexity of regulations and organizational
policies related to health records makes it difficult for en-
terprises to design and deploy effective compliance systems.
We believe that technology can play an important role in en-
suring that privacy policies associated with EHRs and other
patient health information systems are expressed precisely
and unambiguously, as well as in ensuring that processes
and people in such organizations act in a manner that is
compliant with the stated policies.

Our earlier work on formalization of privacy law and its
enforcement in organizational processes in hospitals provides
a useful starting point for this effort [1–3]. We used a
stratified fragment of Prolog with limited use of negation to
formalize a portion of the US Health Insurance portability
and accountability Act (HIPAA). The language we chose
was tractable and it enabled us to build a prototype hospital
Web portal messaging system where the privacy rules were
checked automatically before a message was sent.

In this paper we show that for any formalized healthcare
policy of a certain form, there is a finite model of a rep-
resentative hospital. This hospital, characterized by a set
of individual entities such as doctors and patients, and a
set of facts about relations on the entities in the domain,
is representative in the sense that any situation governed
by the healthcare policy arises in connection with some of
the individuals represented in it. We prove that such a fi-
nite representative model exists for any set of Prolog rules
representing privacy regulations and policies, under certain
reasonable assumptions about the structure of the privacy
policy. We also present an algorithm to create this finite
representative model. The finite representative model can
be used to derive training materials that allow healthcare
professionals to understand how the law applies in different



scenarios. It can also be used to produce cases to test and
debug a system that relies on the policy, such as to ensure
compliance with privacy law.

In a second related effort, we experiment with the trans-
formation of policy in logic form into a more limited form of
policy associated with cryptographic access control. Specif-
ically, given a logic program representing the privacy law,
we create a set of individual entities with the roles or other
attributes referenced in the logic program, and query the
logical database to determine the set of individuals that are
permitted to access the EHR. The attributes of such an in-
dividual are then used to generate the policy for Attribute
Based Encryption (ABE), so that the EHRs encrypted by
ABE can only be decrypted by individuals with the right at-
tributes as determined by the logic program. As part of our
study, we built a prototype system for policy transformation
and measure its performance.

1.1 Background
The Health Insurance Portability and Accountability Act

(HIPAA) requires the establishment of national standards
for electronic health care transactions and national identi-
fiers for providers, health insurance plans, and employers.
The Strategic Healthcare IT Advanced Research Projects
on Security (SHARPS) [4] is a multi-institutional and mul-
tidisciplinary research project, supported by the Office of
the National Coordinator for Health Information Technol-
ogy, aimed at reducing security and privacy barriers to the
effective use of health information technology. We summa-
rize below a SHARPS [5] document that reported obsta-
cles to interoperable health information exchange as com-
piled by 34 states within the U.S. that participated in the
study. The same document proposed privacy and security
solutions for these obstacles. The “solutions” are often high-
level approaches with sub-goals that can in turn be accom-
plished with information technology or administrative pol-
icy changes. We highlight below a few areas where we think
further research can contribute to more effective solutions.
Although we have not carried out research in all these areas,
they provide a backdrop for our current work.
Education: All 34 states recognize the need for varying
levels of education to reduce variation in how policies are ap-
plied and also to increase stakeholder awareness and trust in
the systems. The most common recommendations were for
educational campaigns directed at patients and consumers
and training programs for providers and organizations. We
propose a mechanism to automatically generate interesting
case studies that capture the essential behaviors of the law
in allowing or denying communication of an EHR.
Secure Transmission of Health Information: Several
state teams identified the secure transmission of personal
health information between health care organizations, and
between such organizations and consumers, as a significant
issue. Reports cited the lack of interoperable solutions and
the high cost of implementing appropriate forms of secure
transmission that protect the data in transit and protect
against inappropriate interception and modification. We
propose the use of Attribute-Based Encryption (ABE) to
protect EHR in transmission / external storage, so that only
the authorized parties can decrypt the information.
Common Authentication and Authorization: State
teams noted that the lack of a common method for au-
thenticating individuals created mistrust between organiza-

tions. Current practices are often based on authentication
by phone call or a fax from a known staff member, with
authorization sometimes requiring a patient-signed a con-
sent form (although not necessarily required by law) before
the personal health information is exchanged. In moving
toward efficient EHR exchange, we believe Web-based au-
thentication mechanisms, for example, can be productively
combined with policy-based authorization using techniques
explored in this paper.

1.2 Related Work
A number of articles [6, 7] have explained the complex

security and privacy requirements for healthcare IT. While
several frameworks and concepts have been proposed [8–
10], we believe that further detailed technical studies and
implementations are needed.

In the area of policy specification and law formalization,
there are numerous privacy languages and formalizations de-
scribed in the literature, including the Enterprise Privacy
Authorization Language (EPAL) [11,12], the eXtensible Ac-
cess Control Markup Language (XACML) [13], and the Plat-
form for Privacy Preferences (P3P) [14]. These languages
and logics are used for some specific purposes like access con-
trol or website authorization. However, as explained in [1],
for example, they have drawbacks for expressing detailed
policy based on HIPAA, similar laws, or subtle privacy po-
lices formulated by medical organizations.

There are many other formalization mechanisms proposed
[2,15–17]. While several are based on temporal logic, others
allow study of the policy and law for privacy implications.
Our formulation not only helps in verification and study but
also acts as a tool to effectively extract the policy compo-
nents needed to be compliant and secure. [18] and [19] uses
a formalized model based design to assist in privacy com-
pliance for the Vanderbilt Medical Center. Our finite model
would be a good fit for their privacy component. [20] and [21]
are some related and complementary works.

ABE Attribute based encryption (ABE) facilitates en-
cryption based on a policy, which specifies who can decrypt
the data in the future. This is an active field of research
and many new variants have been proposed [22, 23]. The
important ones being Key-Policy based Encryption [24] and
Ciphertext-Policy ABE [25]. There have also been some ef-
forts to incorporate ABE in different systems [26]. Building
on our previous work [27], we provide an efficient method
to build a HIPAA-compliant policy specifically for medical
data. We implemented the proof of concept using the func-
tional encryption package [28].

2. FINITE MODEL FOR PRIVACY LAWS
Privacy policies are often expressed in general terms, such

as “a patient may receive a portion of the patient’s psychi-
atric record if authorized by the patient’s psychiatrist” that
apply to any individuals in specific roles and relationships.
The roles and relationships may change and the number of
individuals governed by a policy statement may grow over
time. Thus even a simple finite policy can be applied in
a wide range of situations. This leads us to ask whether,
for a given policy, if there is a fixed finite set of individu-
als, with specific roles and relationships, that exhibit all the
cases of interest in all applicable hospitals (or other such
organizations). Building on earlier work [27], we show that
there always exists such a finite illustrative hospital, under
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Figure 1: Initial Compliance Tree

compliantWithALaw( A )

permittedBySomeClause( A ) notForbiddenByAnyClause( A )

permittedBy_C1( A ) ...... notForbiddenBy_C1( A ) ......

coveredBy_C1( A )

permittedBy_Cm( A ) notForbiddenBy_Cm( A )

satisfiesInlineReqmt_C1( A ) permittedBySomeRef_C1( A )

permittedBy_Ref_1,1( A ) ...... permittedBy_Ref_1,n_1( A )

AND

OR

OR

AND

AND

satisfies_C1( A )

AND

notCoveredBy_Cm( A )

OR

satisfies_Cm( A )

satisfiesInlineReqmt_Cm( A ) permittedBySomeRef_Cm( A )

permittedBy_Ref_m,1( A ) permittedBy_Ref_m,n_m( A )

OR

AND

......

Figure 2: Normalized Compliance Tree
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reasonable assumptions about the structure of the law, and
there is an algorithm for constructing it.

2.1 Background
At a high level, our model consists of a database system

that encodes the state of an organization such as a hospital
and answers queries about whether a particular action of
information release is permitted or forbidden by a law such
as HIPAA. The system supports two types of predicates:
A rule predicate captures the essence of the law, and clari-
fies how an intended action stands with respect to the law.
When appropriate, there may be individual rule predicates
that correspond to individual clauses or subclauses of the
law, as well as top-level predicates that provide a summary
answer whether a given action is permitted or forbidden by
the law. A fact predicate captures information specific to
the organization and provides answers to questions such as
the roles assigned to the individuals in the organization, and
relations among various entities in the organization. Our in-
tention is to separate the database into two parts, so that
the rule predicates can be reused across multiple organiza-
tions subject to the same law, and administrators only need
to add facts specific to their organizations.

We review some standard concepts in logic programming
and databases and refer interested readers to [29] and [30]
for further information on this subject. In the definitions
below, each predicate p can take on a vector of arguments.
For brevity we will denote a predicate with an argument
vector by p(x), instead of showing individual arguments. We
recall that a literal L is an atomic formula or its negation,
and we define |L| as L if it is a positive literal, and p(x) if L
is a negative literal of the form ¬p(x), where p is a predicate
symbol. For ease of notation, we also define |p| = |¬p| = p
where p is a predicate symbol.

Fact A fact states a relation that exists between individ-
ual entities and is of the form p(x). For example, docto-
rOf(d,p) states that d is a doctor of p. Unless stated other-
wise, we assume all facts are ground in this paper.

Rule A rule states that a relation holds provided some
other relations hold. It has the form r(X0) ← q1(Xi), ... ,
qn(Xn), which states that r(X0) is true if each of the qi(Xi)
is true, where each |qi| is a rule or fact predicate symbol,
and each Xi is a vector of arguments.

Stratified Program Given a program P containing facts
and rules, we denote by P q the subset of clauses in P with
predicate symbol q in the head. P is defined as stratified if
there is a partitioning of P = P1 ∪ ... ∪ Pn by n non-empty
strata, such that:
· if p(...)← ..., q(...), ... ∈ Pi, then P q ⊂ P1 ∪ ... ∪ Pi;
· if p(...)← ...,¬q(...), ... ∈ Pi, then P q ⊂ P1 ∪ ... ∪ Pi−1.
For convenience, we defined Pi = ∅ for i < 1 or i > n.
Define IndexP (q) as the smallest integer such that P q ⊂
P1 ∪ ... ∪ PIndexP (q)−1. I.e., IndexP (q)− 1 is the highest
numbered stratum of P in which q appears in the head of
a clause. If q never appears in any of the strata, define
IndexP (q) = 1. Unless noted otherwise, we assume P1 con-
tains precisely the facts of P .

Inference Let P = P1 ∪ ...∪Pm be a stratified program.
Let Qi = (P1, ..., Pi) for 1 ≤ i ≤ m. The set BP of all
ground, atomic formulas over the alphabet of P is called
the Herbrand base of P . Let F0 be a ground literal with
predicate symbol q such that |F0| ∈ BP . An inference of
F0 from P with j application of rules within the strata Qi,

denoted by Qi `j F0, is defined as follows. Let I0 = ∅ and
define Ii recursively in ascending order of i:
(i) Ii−1 ∪ (Pi ∩ BP ) ⊂ Ii. Denote Qi `0 F for any F ∈
Ii−1 ∪ (Pi ∩BP ).
(ii) Negation as Failure: F0 ∈ Ii, if F0 is a negative literal,
i = IndexP (q), and ¬F0 /∈ Ii−1. Denote Qi `0 F0.
(iii) F0 ∈ Ii, if F0 is a positive literal, and ∃ substitution θ,
rule R ∈ Pi of the form L0 ← L1, ..., Ln, literals Fj with
|Fj | ∈ BP , integers 0 ≤ mj < ∞, such that θ(Lj) = Fj for
0 ≤ j ≤ n and Qi `mj Fj for 1 ≤ j ≤ n. Denote Qi `m0 F0

where m0 = max{mj |1 ≤ j ≤ n}+ 1.
Define P ` F0 iff ∃m0 such that QIndexP (q) `m0 F0.
Dependency Graph Given a Prolog program P consist-

ing of a set of rules and facts, the dependency graph 〈V,E〉
of P is defined as follows. The vertices V are the predicates
occurring in P , and (u, v) ∈ E exactly when there exists
a rule in P where the predicate in the head is u and the
predicate v is in the body.

Hospital A Hospital is a finite structure (Domain,Rules,
Facts). Here Domain is a set of individual entities about
the hospital, such as hospital employees, patients, business
associates, and records maintained in the hospital. Rules
is a set of rules representing the regulations to be enforced
in the hospital. Facts is a set of ground facts about the
relations on the entities in Domain, and is called the ex-
tensional database (EDB) of the HIPPA Hospital. We
require that Rules∪Facts is stratified, and the body of any
rule in Rules does not reference any constants defined in
Domain.

Given a Hospital H, we define Domain(H), Rules(H),
and Facts(H) as the corresponding attributes of H; and de-
fine Sym(Rules), Sym(Facts) as the set of predicate sym-
bols in Rules and Facts, respectively. Each predicate sym-
bol p in Sym(Rules) ∪ Sym(Facts) is associated with a
unique integer arity(p), which represents the number of ar-
guments of p.

We say H ` F0 if Rules(H) ∪ Facts(H) ` F0.
Action For the purpose of determining compliance, we

define an action a = (us, ur, uo,mt,mp, c, b) ∈ U × U × U×
MT × P × 2U×CT ×2U×BT , where U , MT , P, CT , and
BT are disjoint subsets of Domain(H). Here U is the set
of persons, MT is the set of message types, P is the set of
purposes, CT is the set of consent types, and BT is the set
of belief types. We define A(H) as the set of actions on H.
The attributes of an action have the following interpretation
in our model: us and ur are the sender and the recipient of
the message, respectively; uo represents the patient whose
information is to be communicated; mt and mp are the type
and purpose of the message; c is a set of persons and the
consent each of them provides; and b is a set of persons and
the belief each of them holds.

2.2 Finite Model for Privacy Laws
In this section, we construct a finite model to formalize a

privacy law, subject to certain assumptions on the structure
of the law. For illustration, we will primarily use as exam-
ple the part of the US Health Insurance Portability and Ac-
countability Act (HIPAA) that regulates information shar-
ing in a healthcare provider environment. A main focus is
on HIPAA Administrative Simplification, Regulation Text:
45 CFR Parts 160, 162, and 164 that regulate the use and
disclosure of Protected Health Information (PHI). Although
HIPAA is used to illustrate our results, the assumptions un-



der which we derive our results have been abstracted out, so
that the results can be applied to similar regulations satis-
fying the same assumptions.

We continue the approach of [27] to translate the legal
clauses of a law into the corresponding rules in Prolog. Each
clause of the law often states the situations it covers. For
example, HIPAA regulations 164.510(b)(3) states the sit-
uations it covers as “the individual is not present, or the
opportunity to agree or object to the use or disclosure can-
not practicably be provided because of the individual’s inca-
pacity or an emergency circumstance”. We define predicate
coveredBy Ci(A) to be true when action A is covered by
clause i of the law. Each clause may state some requirements
inline that need to be met to permit an action, and we cap-
ture them with the predicate satisfiesInlineReqmt Ci(A).
A clause may further require that the action is also permit-
ted by some other clauses that it references, and we cap-
ture this using the predicate permittedBySomeRef Ci(A).
The following rule predicates are involved in determining
whether an action is compliant with a law. The predicate
permittedBy Li(A) determines whether action A is permit-
ted by some subset Li of the legal clauses of the law, and
similarly, forbiddenBy Li(A) determines whether A is for-
bidden by the subset Li of the legal clauses. The predicate
compliantWithALaw(A) is defined to be true if A is per-
mitted by some clause of the law and not forbidden by any
clause of the law.

Procedure 2.1. Formalization of A Privacy Law For-
mally, let m > 0 be the number of clauses in the privacy law.
Recall that in Prolog, the comma (,) represents the AND
operator and the semicolon ( ;) represents the OR operator.
The formalization of the law into the Prolog program P con-
tains the following rules.
compliantWithALaw(A)←

permittedBySomeClause(A),
not(forbiddenBySomeClause(A)).

permittedBySomeClause(A)←
permittedBy C1(A);
...;
permittedBy Cm(A).

forbiddenBySomeClause(A)←
forbiddenBy C1(A);
...;
forbiddenBy Cm(A).

For each i ∈ {1, ...,m}, let n i ≥ 0 be the number of clauses
referenced from clause i, and define Ref i, j as the letter ‘C’
followed by the clause number of the jth reference in clause
i. Then the following rules are also in P .
permittedBy Ci(A)←

coveredBy Ci(A), satisfies Ci(A).
satisfies Ci(A)←

satisfiesInlineReqmt Ci(A),
permittedBySomeRef Ci(A).

permittedBySomeRef Ci(A)←
permittedBy Ref i, 1(A);
...;
permittedBy Ref i, n i(A).

forbiddenBy Ci(A)←
coveredBy Ci(A),
not(satisfies Ci(A)).

Note the predicate names do not contain the substrings
Ref i, j as they are replaced by the actual clause references.

For example, if clause 1 references only clause 2, then
permittedBySomeRef C1(A)← permittedBy C2(A).

Finally, the rules that define the predicates coveredBy Ci(A)
and satisfiesInlineReqmt Ci(A), which are specific to the
content of the law, are also part of P .

Although for ease of illustration the rules depicted here
we assume only one of the ni referenced clauses is needed to
permit or forbid the action, it is straightforward to general-
ize them to any finite logical combination of the predicates
of the other clauses using the logical connectives AND, OR
and NOT . Note that in such cases, for the following algo-
rithms and proofs to apply, intermediate predicates repre-
senting the conjunction or disjunction of a subset of predi-
cates can be introduced to maintain the current pattern of
rules where the predicates in the body of the same rule are
connected by at most one of the operators AND or OR.

Assumption 2.2. Acyclicity In this paper, we assume
the dependency graph of the Prolog program P is acyclic,
where P is constructed via the formalization procedure 2.1
from a privacy law L.

Intuitively, this means that whether an action complies with
clause i of the law may depend on whether it complies with
some other clause j, but whether the action complies with
clause j can’t in turn depend on whether it complies with
clause i.

Algorithm 2.3. Construction of Compliance Graphs
Given a privacy law L that satisfies Assumption 2.2 and its
Prolog translation P by procedure 2.1, we construct its com-
pliance graph 〈V,E〉 (which we prove is a tree) as depicted
in Fig. 1. The compliance graph traces the execution of the
Prolog program that determines the compliance of an action
with respect to the law. Each node in V is labeled with a
predicate in P . Initially E is empty and V contains a single
node labeled with compliantWithALaw(A). We recursively
build up V and E as follows. Each edge (u, v) in the depen-
dency graph of P is processed at most once as follows. Pick
(u, v) such that u ∈ V . If v /∈ V , we add v to V and (u, v)
to E. Otherwise we add a new node v′ to V labeled with the
same predicate as v, and add the new edge (u, v′) to E. For
each newly added edge (u, v) in E, we label v with the NOT
operator if ¬v is in the rule body that defines u. Finally, we
label each internal node u in V with the AND operator if its
child predicates are connected by the AND operators, and
with the OR operator if its child predicates are connected by
the OR operators.

Lemma 2.4. Under Assumption 2.2, Alg.2.3 terminates,
and the compliance graph constructed is a tree with the root
labeled compliantWithALaw(A). See Appendix for proof.

We call such a compliance graph an Initial Compilance
Tree.

Algorithm 2.5. Normalization of Compliance Trees
We normalize an initial compliance tree by pushing the NOT
operators towards the leaves using De Morgan’s laws, as il-
lustrated in Fig. 2. The normalization step helps to simplify
Algorithm 2.7 , as we explain later. Specifically, as the NOT
operator is pushed across each layer of the tree towards the
leaves, we interchange AND and OR operators, cancel any



two adjacent NOT operators, and rename each predicate to
a new predicate representing its negation. We call the resul-
tant tree a normalized compliance tree, and we note that
it contains only AND and OR but no NOT operators at its
internal nodes.

Lemma 2.6. Under Assumption 2.2, the initial and nor-
malized compliance trees of a law are finite. See Appendix
for proof.

Given the formalization of a law P , our goal is to under-
stand the behavior of the law by studying its operation on
a domain of entities. Ideally, we would like to be able to
completely characterize the behavior of the law by studying
its operation on a finite domain of entities. This provides
a structured procedure for us to study the law by iterating
the top-level predicate, compliantWithALaw, over a finite
set of actions and inspecting which clauses of the law ap-
ply and the outcome of whether an action is permitted or
prohibited by the law. It also serves as a tool for training
and education purposes, as a student can learn the law by
observing its operation on example actions. We show that
this is possible, and provide a procedure to construct this
finite domain. We construct search trees which are subtrees
of the normalized compliance tree such that each subtree
represents a class of instances of actions that are permitted
by the law. We show that there are a finite number of such
classes which together completely characterize the law.

Algorithm 2.7. Construction of Search Trees We choose
a selection function [30] f arbitrarily such that given each
OR-node u of a normalized compliance tree TN , f selects
precisely one of u’s children in iteration, prunes all subtrees
rooted at the other children of u that are not selected, and
removes the OR label at u. Each application of the selec-
tion function to TN then results in a sub-tree where only the
AND-nodes remain, an instance of which is illustrated in
Fig. 3. We call each such subtree a search tree [30].

Note the removal of NOT operators in algorithm 2.5 simpli-
fies algorithm 2.7 here as the NOT operator when applied
to the AND and OR operators changes their semantics.

Algorithm 2.8. Construction of Proof Trees and a Rep-
resentative Hospital We construct proof trees [30] from
search trees as follows. We initialize extensional database
DEDB to an empty set of facts. For each search tree TS,
define its associated proof tree TP as (TS , θS), where θS is
a substitution of variables in TS by new constants that do
not already appear in DEDB. Since initially there are no
facts relating the new constants, each negative ground literal
of the form ¬p(b) in θS(TS) is evaluated to true using nega-
tion as failure, where θS(TS) is obtained by applying θS to
each variable in TS. Note here that p is necessarily a fact
predicate as no negated rule predicate exists in the normal-
ized compliance tree. For each positive ground literal q(c) in
θS(TS) where q is a fact predicate that appears in the rule
body of a rule predicate in TS we add q(c) to DEDB. If
we encounter both a ground literal and its negation, such as
p(b) and ¬p(b), in θS(TS), then we mark TS as inconsis-
tent and TP is undefined. The Representative Hospital
is defined as H = (Domain, P,DEDB), where Domain is
the set of constants referenced in DEDB, P is the formaliza-
tion of the law using procedure 2.1 and DEDB is the EDB

constructed above. We call the proof trees generated in this
algorithm and the search trees generated in algorithm 2.7 the
proof trees and search trees associated with H.

Given T as an initial compliance tree, a normalized com-
pliance tree, or a search tree, we say an action a satisfies T
with respect to an EDB D1, if compliantWithALaw(a) eva-
lutes to true in T with respect to D1. Formally, PT ∪D1 `
compliantWithALaw(a), where PT is the subset of the rules
in the Prolog formalization P that define the rule predicates
in T . Similarly, we say an action a evalutes to true at a node
u of a tree T with respect to an EDB D1, if PT ∪D1 ` q(a),
where q is the literal label of u. Here q is p where p is the
predicate label of u, if u is not also labeled with the NOT
operator; otherwise q is ¬p.

Theorem 2.9. Every action a compliant with the law L
satisfies some search tree TS of a valid proof tree TP =
(TS , θS), where TS and TP are associated with the Repre-
sentative Hospital H = (Domain, P,DEDB) constructed in
algorithm 2.8. Also, each valid proof tree TP = (TS , θS) pro-
duces an action θS(A) that is compliant with the law in the
Representative Hospital H, where A is a variable vector of
the action type.

3. SECURE HEALTH INFORMATION EX-
CHANGE

In this section we show how policy formalized as a logic
program can be used to automatically generate a form of
access control policy used in Ciphertext-Policy Attribute-
Based Encryption (CP-ABE). Given a logic program repre-
senting the privacy law, we create an extensional database
containing a set of individual entities with the attributes
referenced in the logic program, and query the database to
determine the set of individuals that are permitted to ac-
cess the EHR. The attributes of such an individual are then
used to generate the policy for Attribute Based Encryption
(ABE), so that the EHRs encrypted by ABE can only be
decrypted by individuals with the right attributes as deter-
mined by the logic program. As part of our study, we built
and evaluated a prototype system for policy transformation.

3.1 Background
In CP-ABE, a user’s credentials are represented by a set

of strings called “attributes.” During encryption, a policy
expressed as a formula over these credentials is attached to
the ciphertext. Subsequently, only users whose attributes
satisfy the formula are able to decrypt the ciphertext.

CP-ABE algorithms support four basic operations. The
following algorithm is due to Brent Waters [31].

Setup(U) The setup algorithm takes parameter U as the
number of attributes in the system. It chooses groups G,
GT of prime order p, with an associated bilinear map e :
G x G → GT . It chooses from G a generator g and U
random group elements h1, ..., hU that are associated with
the U attributes. In addition, it chooses random exponents
α, a ∈ Zp . The public key is PK = g, e(g, g)α, ga, h1, ..., hU ,
and the master secret key is MSK = gα.

Encrypt(PK, (M,ρ),M) The encryption algorithm takes
as input the public parameters PK and a message M to
encrypt. In addition, it takes as input an access struc-
ture (M,ρ) representing the cipher policy, where M is an
l x n matrix and the function ρ associates rows of M to
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attributes. The algorithm chooses a random vector
→
v =

(s, y2, ..., yn) ∈ Znp . These values will be used to share
the encryption exponent s. For i = 1 to l, it calculates

λi =
→
v ·Mi, where Mi is ith row of M . In addition, the al-

gorithm chooses random r1, ..., rl ∈ Zp. The ciphertext CT
is the following list of elements: C = Me(g, g)αs, C′ = gs,
(C1 = gaλ1h−r1ρ(1), D1 = gr1), ... , (Cl = gaλlh−rn

ρ(l) , Dl = grl),

and (M,ρ).
KeyGen(MSK,S) The key generation algorithm takes

as input the master secret key and a set S of attributes.
The algorithm chooses a random t ∈ Zp and creates the
user private key as K = gαgat, L = gt, and Kx = htx∀x ∈ S.

Decrypt(CT, SK) The decryption algorithm takes as in-
put a ciphertext CT for access structure (M,ρ) and a user
private key for a set S. Suppose that S satisfies the access
structure and let I ⊂ {1, 2, ..., l} be defined as I = {i : ρ(i) ∈
S}. Then, let {ωi ∈ Zp}i∈I be a set of constants such that if
{λi} are valid shares of any secret s according to M , thenP
i∈I ωiλi = s. The decryption algorithm first computes

e(C′,K)/
Q
i∈I (e(Ci, L)e(Di,Kρ(i)))

ωi = e(g, g)αse(g, g)ast/Q
i∈I e(g, g)taλiωi) = e(g, g)αs. The decryption algorithm

can then divide out this value from C and obtain the mes-
sage M .

3.2 Design for Secure HIE and Technical Chal-
lenges

Our design for Secure Health Information Exchange has
two main components: a logic representation of privacy pol-

icy and an encryption module that generates the access con-
trol policy for CP-ABE. The CP-ABE component provides
three main functions: ABE key distribution, access policy
generation and encryption, and decryption. Each CP-ABE
function can be performed by a different party, although for
the convenience of demonstration we put them on the same
web page currently.

3.2.1 Logic Representation of Privacy Policy
A privacy law such as HIPAA states the conditions un-

der which an entity can share someone’s data with another
entity. Under suitable assumptions such as Assumption 2.2,
the law can be formalized and expressed as a Prolog program
based on the technique described in [27]. Given an exten-
sional database (EDB) containing facts about the entities,
the Prolog program computes the set of permitted health in-
formation exchanges, with each exchange represented by an
eight-tuple: a = (Sender,Receiver,Owner, Type, Purpose,
ReplyTo, Consent,Belief).
This logic system composed of the EDB and the program
can serve as part of an access control layer to support se-
cure exchange of health information, which we explain in
further detail below.

In the subsequent discussion on permitted health infor-
mation exchanges, we ignore the ReplyTo element (which
represents a previous information exchange that caused the
current exchange) and set the Type element to a constant
value of Protected Health Information (PHI). Also, we some-



times call each instance of information exchange as a mes-
sage. In our prototype we break up the six relevant ele-
ments of permitted exchanges into two parts: HIPAAQuery
which contains elements specified during the sharing process
and HIPAAResult which specifies who can legally access the
shared message. The HIPAAQuery is a 3-tuple consisting of
(Sender, Owner, Purpose) while the HIPAAResult consists
of (Receiver, Belief, Consent).

Note that for the purpose of prototyping, testing or de-
bugging a general system, an extensional database (EDB)
that demonstrates all interesting information exchange sce-
narios described by the law can be generated from the Pro-
log program itself using the approach described in 2. On
the other hand, a physical deployment may have an exten-
sional database that limits the possible exchanges, based on
the factual constraints in the EDB at the time of exchange.
However, the case of exporting sensitive data in encrypted
form, and allowing decryption by the rightful entities at a
later time presents an interesting challenge. This is because
an individual entity who will have the right attributes to
decrypt the CP-ABE ciphertext at a future time may not
be known to the system at the time of encryption. To ad-
dress this challenge, similar to the creation of the proof tree
from a search tree in 2, we create in the EDB a represen-
tative entity for each class of receivers permitted to receive
the sensitive information based on some particular search
tree. An individual that belongs to such a class of rightful
receivers will be issued an ABE user private key with the
set of attributes corresponding to that class, and therefore
will be able to decrypt the ciphertext later.

While it is straightforward to represent standard roles
such as a “Surgeon” or “Nurse” as an attribute, by assigning
a unique ID for each role, it is not as obvious how we can
represent relations as attributes. For example, some HIPAA
clauses state that a psychotherapy note can be sent if the
recipient is the original author of that note. As a further
example, the parents of a teenage patient may be permitted
to receive sensitive information about their own child. In
our current design we represent these relations as complex
attributes such as (noteId, author), and (patientId, dad),
(patientId, mom). While this design may work in a theoret-
ical model, in a real-world deployment we may face the issue
of patients being assigned different Ids in different hospitals,
and so further refinement of the design will be needed.

3.2.2 Creating the Access Control Policy
For each value of HIPAAQuery, there is a set A of HIPAA-

Results such that each combination of HIPAAQuery and a
member of this set A is allowed according to the HIPAA
law. The person sharing the message specifies the values
for the three elements of HIPAAQuery. Using those val-
ues, we query a precomputed HashMap object (generated
by our policy engine) to obtain the set of legal HIPAARe-
sults. The person accessing the message provides the values
for the elements in the HIPAAResult tuple. The individ-
ual can access the message only if the tuple of three values
provided matches one of the elements in the set. This is the
basic concept of the access control that satisfies HIPAA law.

We are enforcing this access control using Attribute-based
Encryption as described in the next section. This allows us
to encrypt a particular message and publish it publicly. Only
those who have the attributes that allow them to legally
access the message can decrypt it. This is one way of dis-
tributing the access control.

3.3 Prototype Implementation
Policy Generation using JLog JLog [32] is a Java-based

Prolog interpreter. We use it to construct Prolog queries,
evaluate query results, and generate access control policies.

Attribute-Based Encryption The Functional Encryption
library libfenc is a general purpose framework for implement-
ing functional encryption schemes [28]. It implements a wide
range of encryption technologies including Attribute-Based
Encryption (ABE), Identity-Based Encryption and others.

Prototype HIE We developed a prototype HIE to demon-
strate the enforcement of access control according to HIPAA
law using Attribute-Based Encryption. Our HIE acts as
a central exchange point where messages can be encoded
and decoded by any number of participants with the proper
attributes to access the messages. Any message encrypted
using our HIE can be safely stored in an untrusted cloud
and only legitimate users with valid keys can access their
contents.

Our prototype was built with Apache Tomcat 6 and the
encryption module is powered by libfenc [28]. We demon-
strate the entire process from encryption to decryption on
the HIE. As previously mentioned, the person sharing the
message provides the values for the parameters Sender, Owner
and Purpose. The message is first encrypted using Advanced
Encryption Standard (AES). The AES key is thereafter en-
crypted using the policy corresponding to the values given.

The workflow of the HIE is:

1. Documents are encrypted using AES encryption.

2. We then encrypt the AES key of a document generated
from the previous step using ABE. The attribute in-
puts and the boolean conditions between them is pro-
vided by the Prolog implementation.

3. Each user receives a key generated on the basis of his
or her attributes which allows him to access the doc-
uments that he is entitled to. This key is generated
with the help of the ABE master key. Thus if two or
more hospitals want to use ABE based encryption to
exchange information amongst themselves, they need
to use the same ABE master key.

4. When the user wishes to access a particular document,
we use his or her private ABE key to decrypt the ABE
encrypted AES key of the document. If the decryption
is successful, the decrypted AES key is used to decrypt
the main document. The information contained in the
decrypted document is then displayed to the user.

3.4 Prototype HIE Performance
In our prototype, ABE is only used to encrypt an AES

encryption key of 16 Bytes. We find that AES encryption
and most parts of our prototype incurs negligible overhead,
and most of the time is spent on ABE operations. Perhaps
this is because our message sizes are relatively small. The
time required to perform an ABE encryption depends on the
size of the access policy roughly linearly, whereas decryption
time can vary based on not just the size of the access policy
but also the specific user private key used for decryption.
The reason is that a policy may contain sub-policies joined
by the OR logical operator, and a private key that satisfies
any of these sub-policies satisfies the joint policy. Depend-
ing on the order of evaluation of these sub-policies, 2 private



0"

20000"

40000"

60000"

80000"

100000"

120000"

0" 50" 100" 150" 200" 250" 300" 350" 400"

Ti
m
e%
(m

s)
%

OR%Clauses%

Performance%

1"Thread"

2"Threads"

4"Threads"

8"Threads"

Figure 5: Performance

keys satisfying different sub-policies may incur different de-
cryption times.

Figure 5 shows the encryption time for policies containing
different numbers of disjunctive clauses combined together
with the OR logical operator. We plot the runtime against
the number of OR clauses. Each disjunctive clause is of the
form (Recipient Role AND Necessary Consent AND Neces-
sary Belief ). For example, when a doctor intends to send
the PHI of a teenage patient at request by that teenager,
the policy computed states that the health information ex-
change is permitted if any of the following conditions apply:
a surgeon can receive the PHI without any further consent
by any person, if it is believed that the PHI contains only
the minimal information necessary for the purpose of the
exchange; the parents of the patient can receive the PHI
without any further consent, with no restriction on any be-
liefs held by any person; and so on. The measurements were
made using an extra-large instance on Amazon EC2 with 8
cores and 16 GB memory. To measure scalability, we repeat
the experiment for one, two, four and eight threads. Our
experiments suggest that our architecture is scalable and
suitable for a cloud-based HIE service.

4. CONCLUSION AND FUTURE WORK
Working with a declarative framework for expressing HIPAA

and healthcare privacy policies as logic programs [27], we
considered two related problems. First, we investigated whe-
ther there is a simple, representative hospital that illustrates
all of the interesting cases associated with HIPAA or other
policy. For example, if we were to build a web-based portal
allowing employees or patients to ask HIPAA questions and
receive answers, would this portal depend on the hospital
they are affiliated with, or can we use one representative
hospital example that illustrates all cases that could occur
in all hospitals? Using the concept of compliance tree, de-
fined and illustrated in Section 2, we show that there is one
representative hospital example for each privacy policy that
satisfies a natural set of acyclicity conditions satisfied by
HIPAA. An associated algorithm lets us construct this rep-
resentative example for any given policy. This gives us a
useful way to build education or demonstration portals, or
to develop test cases to understand a policy when it is being
written or applied in any system.

The second problem we considered has to do with using a
general declarative privacy policy, such as the HIPAA rep-
resentation in Prolog/Datalog we developed earlier [27]. If

we have a privacy policy presented in this form, can we
use it for other purposes besides compliance and audit? In
particular, attribute-based encryption (ABE) is a promising
cryptographic method for encrypting sensitive data. When
data is encrypted using ABE, only individuals with decryp-
tion keys that satisfy a given access policy can decrypt that
data. The specification determining which credentials are
sufficient to decrypt specific data is determined by a policy
decision tree that is supplied to the ABE encryption algo-
rithm. Therefore, we investigate the problem of deriving an
ABE policy decision tree from our “universal” privacy pol-
icy. We implemented the algorithm we developed for doing
so in an example system that can be used to put encrypted
medical data on an untrusted cloud server, or other publicly
available server. We believe that this mechanism is useful
to hospital information exchanges (HIE), placing medical
research data on servers for download by researchers, and
other “meaningful use” purposes.

As future work, we plan to expand and improve our example-
generation algorithm, apply it to other classes of policies,
and incorporate the results into our online demonstration
systems. We will continue to improve our ABE software
and produce a system that can be used to place encrypted
data on Dropbox or other publicly available servers.
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Proofs
Proof Sketch of Lemma 2.4 By procedure 2.1, every pred-

icate in the dependency graph of the Prolog program P is reach-
able from the predicate compliantWithALaw(A). Hence Each
edge (u, v) in the dependency graph of P is processed exactly once
by algorithm 2.3, i.e. the algorithm terminates. In the compliance
graph 〈V,E〉, a new edge (u, v) is added to E precisely when a new
node v is added to V . This ensures that each node in 〈V,E〉 has at
most 1 parent. In addition, by construction every node in 〈V,E〉 is
connected from the node labeled with compliantWithALaw(A).
Hence each node in the compliance graph has a unique path to
the node labeled with compliantWithALaw(A). �

Proof Sketch of Lemma 2.6 It is easy to check that the nor-
malization algorithm 2.5 does not change the number of nodes
in the compliance trees. For both the initial and normalized
compliance trees, the branching factors of the internal nodes are
bounded above by the number of legal clauses in the law, which
we denote as m. The only place where a clause references an-
other clause is via the predicates of the type permittedBy Ci.
Since the dependency graph of the law is acyclic, for any i each
permittedBy Ci predicate appears at most once in a chain of ref-
erences, so the height of the tree is bounded above by 3m+ 2. �

Proof Sketch of Theorem 2.9 Given an action a that is
compliant with the law L in a context represented by the facts of
an EDB D1, we have PTI

∪D1 ` compliantWithALaw(a), where
TI is the initial compliance tree, P is the Prolog formalization,
and P = PTI

as they contain the same set of rule predicates.
This in turn is true iff for each internal node u in the normalized
compliance tree TN the following is true with respect to D1: if
u’s children are connected by AND a is evaluted to true at all of
them, and if u’s children are connected by OR a is evaluted to
true at at least one of them. We can use a selection function f
that picks for each OR node u exactly one of the children nodes
where a is evaluated to true. f can then be applied to TN to
generate the required search tree TS , and θS is the substitution
that maps the variable vector A to the satisfying action a, such
that PTS

∪D1 ` compliantWithALaw(a).
Given H = (Domain, P,DEDB) and proof tree TP = (TS , θS),

observe that PTS
∪ DEDB ` compliantWithALaw(θS(A)). By

the construction of TS as a subtree of the normalized compliance
tree TN , PTN

∪ DEDB ` compliantWithALaw(θS(A)). And
by the construction of TN from the initial compliance tree TI ,
PTI

∪ DEDB ` compliantWithALaw(θS(A)), where P = PTI
.

Hence θS(A) is compliant with the law in the context of DEDB ,
where H = (Domain, P,DEDB). �
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