
Sieve: Cryptographically Enforced Access Control for User Data in
Untrusted Clouds

Frank Wang
MIT CSAIL

James Mickens
Harvard University

Nickolai Zeldovich
MIT CSAIL

Vinod Vaikuntanathan
MIT CSAIL

Abstract

Modern web services rob users of low-level control over
cloud storage—a user’s single logical data set is scattered
across multiple storage silos whose access controls are
set by web services, not users. The consequence is that
users lack the ultimate authority to determine how their
data is shared with other web services.

In this paper, we introduce Sieve, a new platform which
selectively (and securely) exposes user data to web ser-
vices. Sieve has a user-centric storage model: each user
uploads encrypted data to a single cloud store, and by
default, only the user knows the decryption keys. Given
this storage model, Sieve defines an infrastructure to sup-
port rich, legacy web applications. Using attribute-based
encryption, Sieve allows users to define intuitively un-
derstandable access policies that are cryptographically
enforceable. Using key homomorphism, Sieve can re-
encrypt user data on storage providers in situ, revoking
decryption keys from web services without revealing new
keys to the storage provider. Using secret sharing and
two-factor authentication, Sieve protects cryptographic
secrets against the loss of user devices like smartphones
and laptops. The result is that users can enjoy rich, legacy
web applications, while benefiting from cryptographically
strong controls over which data a web service can access.

1 Introduction

A single person often uses multiple web services. Concep-
tually, the user has one logical data set, and she selectively
exposes a portion of that data to each web service. In prac-
tice, the services control her data: each service keeps a
portion of the user’s objects in a walled garden which
neither the user nor external services can directly access.
Web services often provide user-configurable settings for
access control, but the web services (not users) define
the semantics of the controls, and users must trust web
services to faithfully implement the restrictions. By ced-
ing control of storage to web services, a user also loses
the ability to enumerate all of her data, since that data
is scattered across a variety of services which hide raw
storage via high-level, curated APIs.

Data silos are problematic not only for users, but for
applications whose value often scales with the amount

of user data that is accessible to the application. For
example, quantified self applications [62], which track a
user’s health and personal productivity, work best when
given data from a variety of sensors and environmental
locations. Similarly, applications which analyze a user’s
medical records [2] or financial transactions [34] produce
the best results when they have access to all of the user’s
medical or financial data. Unfortunately, the storage silos
of modern web services limit a user’s ability to share data
outside of a silo. For example, wearable fitness-tracking
sensors typically upload data to vendor-specific cloud
storage, and medical records are often bound to storage
that belongs to the medical specialist who measured the
data.

The Challenges of Centralized Data: In a user-centric
storage model, a user’s entire data set would reside in a
single, logically centralized cloud store; the user would
selectively disclose portions of that data to individual
third party applications. Systems like Amber [19] and
BStore [20] have explored the benefits of decoupling ap-
plications from user data. However, a centralized data
store increases the damage that results from a subverted
or curious storage provider, because all of a user’s data is
at risk, instead of a service-specific subset.

To protect against untrusted or incompetent storage
providers, users can encrypt data before uploading it.
However, the ultimate purpose of uploading data is to
share it with third party services. Thus, users need a
way to selectively expose pointers to encrypted objects
(and the associated decryption keys). Protocols exist for
sharing cloud data across multiple services, but these pro-
tocols have major usability and security problems. For
example, the popular OAuth protocol [37] enables cross-
site data sharing via delegated API calls (i.e., API calls
that act with the authority of a user). However, OAuth
policies are invariably defined by web services, not by
users. Furthermore, OAuth does not enforce cryptograph-
ically strong constraints on the data that delegated APIs
can access. So, even if a user could generate her own
OAuth policies, she would lack strong assurances about
what those policies mean, and how they are enforced.

Given the discussion above, logically centralized stor-
age seems good for users in theory, but difficult to imple-
ment in practice. This paper addresses three challenges

1

Sieve import
daemon

Application

Sieve storage
 daemon

User device Storage provider
Third party
web service

Unmodified storage
provider IO stack

Unmodified service

logic

Sieve user
 client

1

2

3

Figure 1: Sieve’s high-level architecture. 1) The user
uploads ABE-encrypted data to a storage provider. 2)
The user generates a data policy for a third party web ser-
vice. Sieve translates the policy into an ABE decryption
key, and sends the key to the web service. 3) The web
service pulls encrypted data from the storage provider, de-
crypts it locally, and injects the data into the unmodified
application pipeline.

that emerge from a logically centralized storage architec-
ture. The first is security: how do we provide cryptograph-
ically strong access controls that protect user data against
the compromise of storage providers and user devices?
The second challenge is usability: how can we express
access policies in a way that layperson users will under-
stand, but is translatable to cryptographically enforceable
mechanisms? The final challenge is application richness:
after we have moved user data out of per-application silos
and into user-controlled storage, how can we support the
complex applications that users currently enjoy?

Our Solution: To address these challenges, we propose
Sieve, a new system for delegating access to private cloud
data. Figure 1 depicts Sieve’s high-level workflow. A
user generates raw data on her computational devices,
and uploads encrypted versions of that data to a single
cloud repository; the user manages and pays for the stor-
age. When a third party web service requests access,
e.g., during the first time that a user visits a site, the user
generates a high-level access policy (§3.5) for the ser-
vice. Sieve splits the policy into two pieces: the storage
provider learns which objects a third party can access (but
not the cleartext versions of those objects), and the third
party learns the objects that it can access, and the corre-
sponding decryption keys, while learning nothing about
the rest of the user’s data set. Once the third party has
downloaded the necessary objects and decrypted them, it
feeds the cleartext data to a legacy pipeline for handling
user content.

Sieve leverages three techniques to implement the
workflow in Figure 1:
• Sieve uses attribute-based encryption (ABE) [29]

to implement cryptographically strong access con-
trols. In ABE, encrypted data is associated with at-

(type="Fitness" OR type="Medical") AND
(date > 2012) AND (source="FitBit")

Figure 2: Example policy for an exercise application.

tributes, which are key-value pairs like “date=2012”.
Decryption keys are associated with policies like
the one shown in Figure 2. Policies are defined in
terms of attributes and attribute operators like equal-
ity and less than. A decryption key can decrypt only
ciphertexts whose attributes satisfy the key’s policy.
Before a user uploads objects to the storage provider,
she (or her local device) tags the objects with at-
tributes like the date, the user’s current location, or
the object type. The uploading device encrypts the
objects with the relevant attributes before sending
the objects to the storage provider. Later, when a
third party web service requests access to the user’s
data, the user creates a policy for that service. The
user’s local device translates the policy into an ABE
decryption key, and sends the key to the web service.
Afterwards, the service uses the key to download and
decrypt the subset of user objects that are covered
by the key’s policy.
• To revoke a third party’s access to data, the user in-

forms the storage provider that the third party should
no longer be able to download encrypted user objects.
However, the third party still possesses a decryption
key, and can decrypt leaked ciphertext if the storage
server is later compromised. To prevent this scenario,
Sieve uses key homomorphism [15] to implement
revocation. Key homomorphism allows the storage
provider to re-encrypt user data without learning
the underlying cleartext–the storage provider merely
reads the old ciphertext, and overwrites it with the
output of a function that accepts the old ciphertext
and a user-specified re-keying token as input. Using
this in situ re-encryption, users avoid the need to
re-encrypt data on local devices and then re-upload
it. Additionally, if storage providers are honest at the
time of key revocation, subsequent storage provider
compromises will not reveal data that is encrypted
with keys that are revoked (but possibly still in the
wild). To the best of our knowledge, Sieve is the first
ABE storage system to support re-keying of both
metadata and data.
• ABE uses a master secret key to generate decryption

keys. The loss of this key results in the compro-
mise of the entire cryptosystem. In standard ABE
schemes, the master secret is kept by a single trusted
authority. In the context of Sieve, this would mean
keeping the master secret on a single user device.
This is unattractive, since user devices are often lost
or stolen. Thus, Sieve uses secret-sharing and two-

2

factor authentication to partition the master secret
across multiple devices, and prevent unauthorized
devices from arbitrarily participating in Sieve’s cryp-
tographic protocols.

Sieve represents a middle ground between today’s web
services (which provide weak user control over data
access), and proposed systems from the research com-
munity which strengthen user control, but greatly re-
strict server-side computation [57] or eliminate it alto-
gether [13, 20, 25, 40, 47]. Sieve explores a different point
in the design space, one that provides cryptographically
strong, user-centric access controls, while still permitting
the server-side computation that popular web services
require to add value to user data.

To demonstrate Sieve’s practicality, we integrated Sieve
with two open-source web services. Open mHealth [66]
allows users to store and visualize data series for metrics
like blood pressure and heart rate; Piwigo [3] is an online
photo manager that is similar to Flickr [72]. Integrating
Sieve with Open mHealth and Piwigo was straightfor-
ward, requiring approximately 200 and 250 lines of code
modifications respectively. Experimental results show
that the modified systems can handle realistic workloads.

2 Security Goals

We focus on three kinds of principals. A user is someone
who wants to store data online and selectively expose
it to a third party web service. The user keeps her (en-
crypted) data on a cloud storage provider. Each user has
one storage provider, but potentially many third parties
which need delegated access. Potential storage providers
include Amazon S3 and Microsoft Azure. Potential third
party web services are FitBit, Lark, Mint, and any other
application that generates new value from sensitive user
data.

The user has a financial agreement with the storage
provider: the user pays for the provider to keep her data
and participate in the Sieve protocol on her behalf. The
user places encrypted data on the storage provider, but
never reveals the decryption keys to the provider. This
protects the confidentiality of user data if the storage
service is malicious or compromised. Using signatures,
Sieve also protects the data’s integrity. However, Sieve
cannot guarantee the availability or freshness of the data
that the storage provider delivers to a web service. If
desired, Sieve can be layered atop storage systems like
CloudProof [55] which do provide those properties.

Sieve does not hide access patterns or object metadata
(i.e., ABE attributes) from the storage provider. Thus,
a curious provider can learn which encrypted objects a
third party has been authorized to read, as well as the
attributes that are associated with those objects. If users
are concerned about data leakage via access patterns, they

can layer Sieve atop an ORAM protocol [44]. To hide
attributes from the storage provider, Sieve could use pred-
icate encryption [38, 61]. However, ORAM and predicate
encryption incur heavy performance overheads (§6), so
Sieve uses lighter-weight cryptography that reduces ser-
vice latency at the cost of leaking more metadata. We
believe that this trade-off is reasonable for many users
and companies, given the importance of low latencies in
modern web services [69, 71].

With respect to third party web services, Sieve’s goal
is to reveal user data only as permitted by the user’s dis-
closure policies. After Sieve transmits information to a
third party server, Sieve cannot restrict what the third
party does with the data. For example, third parties may
cache user data locally, even after the user has revoked
access to the canonical versions that reside on her storage
server. Third parties can also share decrypted user data
with other principals via out-of-band, non-Sieve protocols.
Preventing these behaviors is beyond the scope of this pa-
per. However, if a web service shares its user-issued ABE
key, Sieve can revoke that key, preventing anyone who
possesses the key from using it to access user data through
the storage provider (§3.6).

Sieve does not prevent client-side attacks like social
engineering [9] or cross-site scripting [54]. Sieve also
does not protect against a subverted device that the user
believes is functioning properly, e.g., a smartphone that is
infected with a rootkit. However, Sieve uses secret sharing
to protect system-wide secrets like the ABE master key
from the loss of a single device (§3.7).

3 Design

As shown in Figure 1, Sieve consists of three components:
a user client, a storage provider daemon, and an import
daemon that is run by third party web services. The Sieve
client runs on each user device. The client provides a
GUI for defining high-level access policies, and insulates
the user from the low-level management of cryptographic
keys and data uploading. The storage provider daemon
communicates with Sieve clients, writing encrypted user
data to cloud storage, and using the data’s ABE attributes
to build an index. The index allows for fast data retrieval
by the import daemons which belong to web services.
An import daemon receives ABE decryption keys from
Sieve clients; each key allows the daemon to decrypt a
subset of a user’s encrypted data.

In Sieve, there are five types of cryptographic keys, all
of which are automatically managed by a user’s Sieve
client. The per-user ABE master key helps to gener-
ate the individual ABE decryption keys which are given
to web services. The user’s ABE public key encrypts
metadata blocks with user-provided attributes; note that a
storage provider keeps both data and metadata blocks for

3

a user. A web service’s ABE decryption keys determine
which metadata blocks can be decrypted by the service
(§3.4). Metadata blocks point to data blocks, each of
which is signed by a per-user RSA key, and encrypted by
a symmetric key that is contained within the associated
metadata block. Importantly, all of these cryptographic
operations are hidden from the user. A user merely tags
data and generates access policies; the Sieve client trans-
parently converts those high-level activities into low-level
cryptographic operations.

From the perspective of a third party, a user’s Sieve
storage is read-only, i.e., only the user can write new
objects and update old ones. Third parties use their own
storage for data that is derived from a user’s Sieve objects.

3.1 Usage Model
In theory, any web service that imports user data is com-
patible with Sieve. In practice, certain kinds of web ser-
vices and user data are easier to integrate with Sieve.
Sieve works best with
• data streams that are tightly bound to a particular

user, and
• web services that can tolerate those data streams be-

ing read-only (and perhaps only partially disclosed).
Examples of Sieve-amenable data streams include de-
mographic information like age and location; financial
and medical records; sensor data from quantified self ap-
plications; longitudinal, cross-site histories of browsing
behavior and e-commerce transactions; and multimedia
data streams containing photos, videos, and audio. Ex-
amples of web services that consume such data streams
are social media applications like Instagram [1], exercise
trackers like Open mHealth [66], and financial analysis
sites like Mint [34] that require access to a user’s spending
habits.

Applications like Reddit [4] and StackOverflow [6] are
less appropriate for Sieve. In these applications, user data
has less standalone value to the owner; instead, most of
the value derives from embedding the data in a larger,
service-specific context like a Reddit discussion. Web-
based email is also an awkward fit for the Sieve model,
since email services require mutable, per-user state like
mailboxes, but Sieve exports read-only storage. An email
service could pull read-only outgoing messages from
Sieve storage, and implement the mutable mailbox state
on the service’s own machines. However, such an archi-
tecture would be awkward, since users would have no
way to selectively expose incoming messages to the mail
service.

3.2 Overview of ABE
Attribute-based encryption [29] is a public-key encryption
scheme in which a cleartext object is associated with at-

Ktype=“photo” AND
(location=“home” OR “work”) AND
year ≥ 2000

K type=“photo” AND
location=“work” AND
year < 2015

Encrypted
object0 type=“photo”,

location=“home”,
year=2015

type=“photo”,
location=“work”,
year=2014

Encrypted
object1

type=“medical”,
location=“work”,
year=2014

Encrypted
object2

Figure 3: In this example, there are two ABE keys at the
top, and three ABE-encrypted objects at the bottom. An
arrow indicates that a key can decrypt a particular object.

tributes that govern how the object is encrypted. Each de-
cryption key has an access control structure (ACS) which
enumerates one or more attributes. An ACS can test an
attribute for equality (e.g., location=“Paris”) or com-
parative value (e.g., age > 35). An ACS can also chain
those simple tests using ANDs, ORs, and NOTs. As shown
in Figure 3, a key can decrypt an object only if the key’s
ACS matches the object’s attribute values.

We use the shorthand notation Ka0,...,aN to refer to
an ABE key whose ACS contains the attribute tests
a0, . . . ,aN . All tests are implicitly joined via ANDs un-
less we explicitly note otherwise.

3.3 Assigning Attributes to User Data

Raw user data comes from a variety of sources. Some
of it is directly generated by a user’s devices; for ex-
ample, a user might enter financial information directly
into a spreadsheet. Data might also come from an exter-
nal source, like an email attachment. Sieve associates
each object, regardless of its provenance, with a set of
attributes.

Some attributes can be automatically assigned by hard-
ware, like the GPS coordinates for a running route. Other
attributes can be extracted by software, using application-
specific transducers or semantic file systems [28, 39, 63].
Users can also manually tag objects. Sieve is agnostic to
the manner in which attributes are assigned, although our
implementation of the Sieve client provides a GUI which
simplifies manual tag assignment. The GUI also allows
users to retag an object after it has already been encrypted
(§3.9).

Users and web services must agree on data schemas, so
that web services can meaningfully aggregate and process
information from different users. In particular, web ser-
vices need to know a standardized set of attributes which
are associated with various data types. To define this stan-

4

dardized set, Sieve uses FOAF [17] as the schema model
for data about human users, and RDF [21] as the schema
model for data about user objects.

Each Sieve user has a standardized FOAF record which
stores basic scalar information like her name, location,
and birthday. Sieve associates each entry in the FOAF
record with an ABE attribute; for example, a user’s name
is associated with the userName attribute. Sieve does not
upload the actual FOAF record to the storage provider,
since the only purpose of the FOAF record is to stan-
dardize the metadata that is associated with each user.
Instead, Sieve uploads individual FOAF entries, encrypt-
ing each one with the associated ABE attribute (e.g.,
〈“Alice”〉Kfield=userName , where “Alice” is the encrypted data
and Kfield=userName means that the data can be decrypted
only by web services whose ABE keys have access to the
userName field attribute).

Sieve associates each data object with a type-specific
RDF schema. For example, a W2 tax record has attributes
for the user’s pre-tax income, her number of dependents,
and so on. Similar to FOAF records, RDF records are
used to define a standard attribute set for each data type.
Sieve uploads individual encrypted RDF entries to the
storage provider.

Some data objects like images are not decomposable,
i.e., each object is disclosed or not disclosed at the gran-
ularity of the entire object. For objects like this, Sieve
uploads the entire object, encrypting it using the standard-
ized RDF attributes and any manually added user tags.
For example, a photo has standard attributes like height
and width, and may also possess user-defined tags like
“Vacation” or “Family.”

As applications evolve, RDF and FOAF schemas may
change. Sieve is compatible with preexisting techniques
for synchronizing schema changes across a distributed
system [51, 58, 59].

3.4 Uploading Data to the Storage
Provider

Suppose that a user wishes to upload a file F that has
attributes a0, . . . ,aN . Before uploading the file, the Sieve
client must encrypt the file such that decryption is possible
only with the ABE key whose ACS matches a0, . . . ,aN .
The naïve approach is to directly encrypt F with Ka0,...,aN .
However, ABE is a form of public key cryptography, and
it is significantly slower than symmetric key cryptography.
Thus, Sieve uses a hybrid encryption scheme, encrypting
the file data with a symmetric key, and encrypting the
symmetric key with ABE.

The end-to-end upload protocol is the following. First,
the Sieve client generates a symmetric key k, and uses that
key to encrypt F . Sieve uploads the encrypted 〈F〉k to the

storage provider. The storage provider responds with a
GUID for the file. Sieve then uploads a metadata block for
F . The metadata block is an encrypted pointer containing
〈GUID,k〉Ka0 ,...,aN

. Only principals which possess keys
that match a0, . . . ,aN can decrypt the pointer, fetch the
object, and decrypt the object.

In the next section, we describe how web services ac-
quire ABE keys. For now, we merely say that users do
not share ABE keys with storage providers. Thus, a stor-
age provider cannot inspect the data that it stores. The
provider can try to modify the data or produce fake user
data, but Sieve clients sign each object with a user-specific
RSA key before encrypting the object; the signatures al-
low web services to detect tampering.

From the perspective of a third party web service, Sieve
storage is read-only. However, a user is free to create new
objects, delete old ones, and update objects that reside
at preexisting GUIDs. If a user’s device has cached the
GUID and the symmetric key for a particular object, the
user can update that object directly, without having to
fetch the associated metadata block and incur ABE over-
head to decrypt it.

3.5 Defining and Enforcing Access Policies

In Sieve, all user data is private by default, since users
must explicitly share ABE decryption keys that provide
access to data. When a third party requests access per-
missions, e.g., upon the first time that a user visits a
web site, the user generates an access policy for the
site. Policies are defined in terms of attributes, and
the Sieve client provides a GUI which makes it easy
for users to explore which attributes her data contains,
and which objects would be exposed for a given pol-
icy. Policies are simple boolean expressions; for ex-
ample, a web service used by a physician might re-
ceive the policy (fileType=“medicalRecord” AND
year>2010 AND doctor=“John”).

After the user defines a policy, her Sieve client assem-
bles the ABE master secret (§3.7) and generates an ABE
key with the appropriate ACS. The Sieve client then
sends the key and the name of the user’s storage provider
to the remote web service. The message is protected with
TLS [22] to ensure confidentiality and integrity.

Later, when the web service desires to access user data,
the service does not need to interact with the user. Instead,
the service sends an access request directly to the user’s
storage provider. The request contains a list of the at-
tributes which belong to the data of interest. The storage
provider returns the encrypted metadata blocks for the
relevant objects. The web service decrypts the metadata,
revealing the GUIDs for the requested objects as well as
their symmetric encryption keys. The web service uses

5

the GUIDs to fetch the encrypted objects. After decrypt-
ing the objects locally, the service feeds the cleartext data
into an application-specific data pipeline.

Once this happens, Sieve is uninvolved in the applica-
tion workflow. Thus, Sieve is compatible with the current
web ecosystem which uses third party computation and
storage to add value to user data. However, Sieve provides
users with cryptographically strong control over the raw
data that each service receives. Sieve’s access policies
also have three attractive properties:
• The number of policies scales with the number of

web services that a user shares data with, not the
much larger number of objects that she owns.
• Policy generation is decoupled from object genera-

tion. At object creation time, users do not have to
speculate a priori about whom a new object might
be shared with.
• Policies safeguard objects using cryptography, but

users are insulated from the details of key manage-
ment.

Given all of this, we believe that Sieve strikes a good
balance between security, usability, and backwards com-
patibility with current web services.

3.6 Key Revocation

In Sieve, an individual object is encrypted with a symmet-
ric key k; the object’s metadata block (which contains k
and the object’s GUID) is encrypted with ABE attributes
a0, . . . ,aN . A web service caches its ABE key, and it may
also cache symmetric keys and GUIDs, to avoid repeated
fetches and decryptions of metadata blocks. Caching
makes revocation tricky, since a user that wants to revoke
a service’s access rights cannot force the service to delete
cached keys. An honest storage provider can refuse ac-
cess requests from deprivileged third parties, but if the
storage provider is compromised, it can leak data that is
encrypted with ostensibly revoked keys that are still in
the wild.

To protect against storage server compromise, Sieve
revokes keys by re-encrypting user data and metadata
with new keys that are not shared with the newly deprivi-
leged third party. If the storage provider is honest at the
time of re-keying, then even if it is compromised later, it
will never leak data that is encrypted with revoked keys.
Leveraging homomorphic encryption [27], the storage
provider re-encrypts the data locally, using a re-keying
token provided by the user. The storage provider learns
nothing about the old encryption key, the new encryp-
tion key, or the underlying cleartext; the user avoids the
need to download, re-encrypt, and re-upload data from
her personal devices.

In the rest of this section, we first describe how data is
re-encrypted, and then explain how the associated meta-
data is re-encrypted.

Re-encrypting data: To enable storage providers to re-
encrypt data in situ, Sieve employs a key homomorphic
pseudorandom function [15, 50]. We define that function
F as

F(k,x) = H(x)k

where H is a hash function and k is the secret key
associated with each object. F is additively key ho-
momorphic, which means that, for two keys k and k′,
F(k,x) ·F(k′,x) = F(k+ k′,x). All operations described
in this section are done modulo p, where p is a large
prime.

Using F , we define an encryption scheme whose secu-
rity is similar to that of AES. Like AES-CTR, our new
encryption scheme operates on blocks of data, and uses
a random counter to convert a block cipher into a stream
cipher. In our new scheme, the jth ciphertext block c j is
equal to

c j = m j ·F(k,N + j)

where m j is the jth cleartext block, and N is a public
nonce that is equivalent to the initialization vector in AES-
CTR. To decrypt, a third party extracts k from a metadata
block and performs the following calculation:

m j = c j ·F(−k,N + j)

To revoke the ABE key Ka0,...,aN , a user’s Sieve client gen-
erates a re-keying token for each object that is accessible
via Ka0,...,aN . For an object encrypted by k, the re-keying
token is δ =−k+ k′, where k′ represents the new encryp-
tion key for the object. The client sends δ to the storage
provider; this operation is safe because the provider can-
not recover k or k′ from δ . The storage provider uses δ

to compute a new version of each ciphertext block c j:

c j,new = c j ·F(δ ,N + j)

= m j ·F(k,N + j) ·F(−k+ k′,N + j)

= m j ·F(k′,N + j)

In this manner, the storage provider re-encrypts objects
without learning the encryption keys or the underlying
cleartext.

Re-encrypting metadata: Each user device maintains
an integer counter called the epoch counter. The counter
is initialized to zero, and represents the number of revo-
cations that the user has performed. When a user device
generates a new ABE key, Sieve automatically tags the
key with an epoch attribute that is set to the current value
of the epoch counter. The epoch attribute is a standard
ABE attribute; until now, we have elided the epoch at-
tribute in key descriptions, but we explicitly represent it
in this section.

Suppose that a web service possesses the ABE key
Ka0,...,aN ,epoch=i, where i is a whole number. To remove

6

the service’s access permissions, the user first re-encrypts
the affected data using homomorphic encryption. The
user then increments the epoch counter to i+1. Next, the
user generates a new metadata block for each re-encrypted
object, inserting the new k. The user encrypts the new
metadata block and uploads it to the storage provider;
the metadata is encrypted using the updated ABE key
Ka0,...,aN ,epoch=i+1. Finally, the user sends the new ABE
key to any non-revoked web services who possess the old
version of the key from epoch i (remember that if the user
gives multiple web services access to a0, . . . ,aN , those
services will receive the same ABE key).

Additional web services may require new ABE keys,
depending on how the attributes in ABE keys over-
lap. For example, consider two web services: the
first possesses K(a0 OR a1) AND epoch=0, and the second has
K(a1 OR a2) AND epoch=0. Both keys grant access to a meta-
data block with attributes a1 AND epoch = 0. To re-
voke the first ABE key, Sieve re-encrypts the metadata
block using the attributes a1 AND epoch = 1. As a re-
sult, the second, non-revoked web service loses access
to the block. Thus, Sieve must give an updated key
K(a1 OR a2) AND epoch=1 to the second service.

When Sieve re-encrypts a data object, the object’s
GUID stays the same, but its symmetric key changes.
This invalidates any cached symmetric keys that are held
by web services. So, when a service receives an updated
ABE key, the service discards any cached symmetric keys
that were decrypted using the old version of the ABE
key. Note that object signatures are unaffected by revo-
cation, because signatures are on cleartext data which is
unmodified by the revocation process.

Additional details: A Sieve user will often possess
multiple devices; for example, a single user might possess
a smartphone, a laptop, and a quantified self device like
a FitBit. If a user has multiple devices, then the device
which initiates a revocation will broadcast the revoked
key and the new epoch counter to the other devices. This
ensures that the other devices do not use an old epoch
number to encrypt new metadata blocks. Network parti-
tions may delay the rate at which devices learn about a
revocation, so when a device receives a revocation notice,
the device proactively re-keys any data and metadata that
it mistakenly encrypted using the revoked key. Each re-
vocation notice has an issue time, which allows devices
to identify which data needs re-keying. Computationally
weak devices like FitBits can delegate re-keying work to
more powerful devices like laptops.

A revocation message is signed by the public key of the
device that issued the message. Devices learn about each
other’s public keys at Sieve initialization time, and later,
when the user adds a new device. By signing revocation
messages, Sieve prevents arbitrary devices from injecting
fraudulent revocation notices.

To the best of our knowledge, Sieve is the first ABE
system which supports full re-keying of both data and
metadata. Prior ABE systems either cannot revoke keys
at all [73], or can revoke access only to metadata [10,
52, 65]; in the latter case, data remains encrypted with
revoked symmetric keys, leaving that data vulnerable to
storage server compromise or negligence.

3.7 Protecting Against Device Loss

At initialization time, Sieve creates an ABE master secret.
Sieve uses the master secret to derive the ABE decryption
keys that are given to web services. Thus, the entire
cryptosystem is compromised if the master secret is lost.

In a straightforward implementation of ABE, each user
device has a copy of the master secret. However, portable
devices like smartphones and tablets are often lost [70],
meaning that a naïve implementation of ABE exposes
the master secret to great risk. Even if users encrypt the
master secret with a password-derived key [68], users
often pick weak passwords [26], giving the master secret
weak protection in practice if a device is lost.

To mitigate the impact of lost devices, Sieve uses
Shamir secret sharing [60] to partition the master secret
across a user’s devices. In a (k,n) sharing scheme, the se-
cret is divided across n devices, and k shares are required
to reconstruct the secret. In the context of Sieve, this
means that when a user device needs to generate an ABE
key, the device must first gather k−1 shares from other
devices. Only then can the device assemble the master
secret, generate the ABE decryption key, send the key
to a web service, and then delete the local copy of the
assembled master secret.

When the master secret is being assembled, Sieve re-
quires the user to explicitly authorize each participating
device to release its local share. By default, Sieve uses
a k of 2, so this authorization scheme is similar to two-
factor authentication [7]—a user cannot generate an ABE
decryption key unless she controls two separate devices
(e.g., a laptop and a smartphone). This means that, if
an attacker finds a single lost device, that device cannot
generate the master secret.

Sieve also employs secret sharing to protect the user’s
RSA signature key. During uploads to the storage
provider, the signature key is used to authenticate the
client-side of the TLS session. Thus, the storage provider
can reject fraudulent upload attempts from arbitrary de-
vices.

Secret sharing protects the ABE master secret and the
user’s signing key. However, a lost device possesses a
device key that is used to authenticate messages from
that device. An attacker with a lost device can try to use
the device key to subvert the revocation protocol (§3.6).
For example, if a malicious lost device can roll back the
epoch to a smaller number, uncompromised devices will

7

upload new data that can be decrypted with revoked keys.
To prevent attacks like this, Sieve relies on the multi-
factor authentication that is built into the secret sharing
protocol—revocation requires a device to assemble the
master secret, and assembling the master secret requires
the user to possess multiple devices.

To add or remove devices from the secret sharing
scheme, or to change k, the user must invalidate the old
shares. To do so, the user must find k devices to par-
ticipate in a new secret sharing exchange that uses the
updated k and n.

Sieve provides no protections against a subverted de-
vice that a user believes is not lost or malfunctioning. For
example, if a user wants to upload data from the smart-
phone that she is currently using, and the smartphone has
a rootkit, the phone can arbitrarily delete the user’s data,
upload garbage, or improperly revoke keys.

3.8 Minimizing ABE Overheads

Until now, we have assumed that clients perform two
encryptions for every object upload: an ABE encryption
for the metadata block, and a symmetric encryption for
the data block. ABE is a public key cryptosystem, so
ABE operations are much slower than symmetric ones.
Fortunately, Sieve clients can use several techniques to
reduce the frequency of ABE operations.

The simplest approach is for clients to store multiple
objects inside each data block. Creating the associated
metadata block will still require an ABE encryption, but
subsequent writes and reads of the data block will incur
only symmetric cryptography costs—clients can update
the data block in-place, without changing the metadata,
and third parties can cache the data block’s symmetric key
to use during reads. For example, a smartphone with a
GPS unit might use a single data block to store a month’s
worth of location data. The phone appends new location
samples to the current month’s data block, creating a new
data block and metadata block when a new month begins.

Clients can also use more complex storage-based data
structures. For example, as shown in Figure 4, a Sieve
client can use indirect GUIDS in the same way that a Unix
file system uses indirect data pointers. In this scheme, the
top-level GUID for a storage-based data structure refers to
a metadata block that points to a GUID map. The GUID
map is just a data block that contains a symmetric key and
additional GUIDs; those GUIDs point to raw data blocks
that are encrypted with the symmetric key. Once again,
clients eliminate ABE costs by encrypting many objects
with the same symmetric key, and caching that key.

Having many, smaller data blocks instead of fewer,
larger data blocks is useful if the storage provider does not
allow partial block writes (meaning that all writes force

kGUID

k
GUID GUID GUID GUID

Ka ,…, a0 N

Data
k

Data

k
GUID

GUID

GUID k
Data

k
Data

Figure 4: An example of a storage-based data structure.
Using indirect GUIDs, the metadata block at the top
points to a data block that contains only GUIDs. Those
GUIDs point to raw data blocks. Raw data blocks can
also embed pointers, as demonstrated by the simple tree
structure that links the data blocks.

the client to upload at least a block’s worth of data).1

Multiple small blocks are also useful if the symmetric
cipher does not allow updates to random offsets in the
ciphertext.2

A raw data block can also embed GUIDs which refer-
ence other data blocks. This allows a client to build more
complex data structures than flat arrays of data blocks.
For example, Figure 4 shows a simple tree with a single
parent and three children; by convention, the parent of the
tree is the first entry in the GUID map. Each data block
can hold multiple items, but when a block fills up, the
client creates a new data block, adds the associated GUID
to the GUID map, and then updates any internal GUIDs
within preexisting data blocks. A third party whose ABE
key decrypts the metadata block can traverse the tree struc-
ture without additional ABE operations, since all of the
data blocks are encrypted with the same symmetric key.

Each storage-based data structure defines a Python API
for adding and removing objects, as well as traversing
the entire structure. Sieve clients and web services cache
the metadata blocks for storage-based data structures, and
use the Python APIs to interact with the structures. Thus,
Sieve clients and web services are insulated from the low-
level details of GUID maps (although both parties can
access raw storage if desired, and if Sieve’s ABE policies
allow such accesses).

Sieve’s revocation protocol (§3.6) is compatible with
storage-based data structures. When Sieve determines
that a metadata block must be re-keyed, Sieve checks
whether the metadata refers to a storage-based data struc-
ture. If so, Sieve must traverse the structure, identifying

1For example, Amazon’s S3 allows partial reads, but not partial
writes [8].

2Many commonly used block cipher modes, such as CBC and CTR,
do not easily support new writes to random offsets.

8

GUIDs and re-keying the associated data blocks. Note
that GUID maps are re-encrypted in place, just like any
other data block. The revocation protocol does not change
the GUIDs that are associated with re-keyed data blocks,
so embedded GUIDs inside data blocks remain valid after
re-keying.

Each data block that is referenced by a particular GUID
map is encrypted with the same k. However, Sieve uses
counter-mode encryption [42], and employs a different
counter for each block. Thus, if an attacker learns the
cleartext for one ciphertext block, the attacker does not
have an easier job of decrypting other ciphertext blocks
with the same k.

3.9 Relabeling
In Sieve, a user may relabel an object. For example, a
user can restrict access by adding an additional attribute
to the object. A user can also remove attributes, or swap
one attribute for another.

To implement relabeling, a user’s Sieve client performs
three actions. First, the client replaces the old metadata
block on the storage server with a new one that contains a
new symmetric key and is ABE-encrypted using the new
attributes. Second, the client uses homomorphic encryp-
tion to re-encrypt the object under the new symmetric key
on the storage server. Finally, the client updates storage-
based references to the object, ensuring that the references
adhere to the object’s new access policy. The client can
locate these references because the client knows the old
attributes for the object, the new attributes for the object,
and the attributes for all of the user’s metadata blocks.
Thus, the client can determine which references must
be patched. For example, suppose that a user has two
storage-based data structures S0 and S1; further suppose
that, due to relabeling, an object must move from S0 to
S1. By inspecting the object’s old attributes, the client
determines that the object was originally referenced by S0.
The client homomorphically re-encrypts the object using
symmetric key k′, traverses S0 to remove any references
to the object, and then adds a 〈GUID,k′〉 reference for
the object to S1. Sieve performs the traversals, removals,
and additions using the APIs defined by the storage-based
data structures.

3.10 Discussion
Alternative policy languages: Attribute-based disclo-
sure policies are easy for users to understand, and these
policies naturally map to ABE cryptosystems. However,
ABE cannot express arbitrarily complex policy functions.
Garbled circuits [41] and functional encryption [16] are
Turing complete, but they are prohibitively slow. For ex-
ample, garbled circuits decrypt AES data at a rate that is

four orders of magnitude slower than native AES decryp-
tion [12]. Relative to functional encryption and garbled
circuits, ABE is several orders of magnitude faster.

Paying for storage: In Sieve, each user places her ob-
jects in private cloud storage. Someone must pay for that
storage. One option is for ad networks to pay. In Sieve, ad
networks can be third parties, and they can receive ABE
keys to access user data. Using a micropayment system
like FileTeller [35], advertisers could pay for the right
to collect longitudinal data about a user, and generate
targeted advertisements based on that data. By deferring
user storage costs, advertisers would encourage users to
continue to declassify a subset of their data. Indeed, since
each user now stores all of her data in a single place
instead of multiple locations, ad networks would gain
access to more contextual information than in the current
web ecosystem, even if users choose which objects to
reveal [67]. Thus, Sieve might enable a happy middle
ground in which users gain explicit control over the data
seen by third parties, and third parties willingly subsi-
dize private user storage in return for better contextual
information.

If ad-driven storage subsidies are poorly designed, they
may lead to perverse trade-offs between subsidy amounts
and the required levels of data disclosure. A full study
of such interactions is beyond the scope of this paper.
For now, we merely observe that some users may opt out
of the subsidy system entirely. These users will have to
pay for their own storage, but there is reason to believe
that they would do so. Well-known sites like Pandora,
Slashdot, and OkCupid already allow users to pay a small
monthly fee to remove advertisements, so there is a pre-
existing demographic that is willing to pay money in ex-
change for better privacy. The popularity of open source
applications also demonstrates that developers are willing
to make high quality software without the expectation of
direct payments from users. Thus, we believe that Sieve’s
application model is realistic.

Efficient data importing: In the current web ecosys-
tem, users explicitly submit data to web services, making
it easy for those services to determine when new infor-
mation has been created. In Sieve, users submit new data
to the storage provider. However, user devices know the
tags which are associated with both new data items and
web service ABE keys; thus, when a device uploads an
object of interest to a particular service, the device can
proactively notify the service of the upload.

Storage-based data structures (§3.8) also make it easy
for services to identify new data. For example, using a
storage-based log, user devices can append new data to
the head of the log. A service can cache the GUID and the

9

symmetric key for the log head, and periodically check
the beginning of the log for new objects.

Anonymity across services: Some users may not want
to be tracked across different web services. For example,
a user might be comfortable sharing data with services
X and Y , but uncomfortable with X knowing how she
interacts with Y , and vice versa. Sieve cannot restrict
what services do once they possess user data, so Sieve
cannot prevent X and Y from pooling their data and trying
to correlate user behavior across both services.

Users can employ various techniques to make tracking
more difficult. For example, proxies like Tor [23] allow
users to hide their IP addresses from web services. Users
can also establish a unique login identity for each web ser-
vice, or lobby web services to use anonymous credential
systems [18]. Unfortunately, Tor and anonymous creden-
tial systems rely on network proxies that hurt application
responsiveness, and seemingly anonymized data sets can
still reveal sensitive user information to machine learning
algorithms [24]. Thus, providing anonymity on the web
is still an important area for future research.

4 Implementation

Our Sieve prototype consists of a Sieve client, a storage
provider daemon, and a Sieve import daemon that is run
by third parties. Each component is written in Python,
and uses PyCrypto [43] to implement RSA and AES.
For ABE operations, we use the libfenc [30] library with
elliptic curves [48] from the Stanford Pairing-Based Cryp-
tography library [45]. To build Sieve’s key homomorphic
symmetric cipher [15], we use the Ed448-Goldilocks el-
liptic curve library [31].

The storage provider daemon uses BerkeleyDB [53]
to store encrypted data blocks, and MongoDB [49] to
store metadata blocks. For each data block, the key is a
GUID, and the value is a symmetrically encrypted object.
For a metadata block, the key is a set of cleartext ABE
attributes, and the value is an ABE-encrypted GUID and
symmetric key. Metadata blocks are indexed by their
attribute fields, and all metadata blocks for a particular
user are stored in a MongoDB collection.

The JavaScript code in a web site interacts with the
local Sieve client using a small RPC library that we pro-
vide. When a web site initially requests access to a user’s
data, the site’s JavaScript sends an XMLHttpRequest to
a localhost webserver run by the Sieve client. The Sieve
client then displays a GUI that allows the user to define
an access policy for the site, and send the associated ABE
key to the site’s web server.

5 Evaluation

In this section, we explore one high-level question:
is Sieve practical? To answer this question, we inte-
grated Sieve with two applications. The first was Open
mHealth [66], an open-source web service that allows
users to analyze their health data. We also integrated
Sieve with Piwigo [3], an open-source online photo man-
ager. We show that the integrations were straightforward,
and that the end-to-end application pipelines can handle
realistic workloads.

All experiments ran on a 10-core machine with 2.4
GHz Intel Xeon E7-8870 CPUs and 256 GB of RAM. We
ran each experiment 50 times, and we report the average
(standard deviations were small). Sieve used 2048 bit
RSA with SHA256 to sign user objects. ABE operations
used 224-bit MNT curves [48]. To symmetrically encrypt
objects, Sieve used 128-bit AES in CTR mode, or Ed448-
Goldilocks elliptic curves in randomized counter mode.
The latter cipher is key homomorphic, but the former is
not; by comparing Sieve’s performance with these ciphers,
we could measure the cost of supporting key revocation
(§3.6). All web servers ran on the test machine’s loop-
back interface, to minimize network latency and focus on
Sieve’s cryptographic overheads.

All GUIDs were 64 bits long. Thus, a metadata block
which contained a GUID and an AES key was 24 bytes in
size, whereas a metadata block which contained a GUID
and an Ed448 key was 64 bytes long.

5.1 Case Studies

Open mHealth: Open mHealth allows users to upload
medical data to a web server that will analyze the data
and provide explanatory visualizations. To integrate Sieve
with Open mHealth, we first modified the Open mHealth
client to upload data via the Sieve client instead of di-
rectly to the Open mHealth server. We then ran a Sieve
import daemon on the Open mHealth web server, config-
uring the daemon with the data schema used by the Open
mHealth analytics engine. These modifications required
approximately 200 lines of code to be changed in the
Open mHealth platform.

To test the end-to-end performance of the application
pipeline, we used Open mHealth’s data generator to create
a week’s worth of health data. The data included infor-
mation like blood pressure, weight, physical activity, and
heart rate. Each day had approximately 14 data points.
For each data point, the Sieve client added attributes like
the date that the sample was collected, the name of the
associated user, and the type of data represented by the
sample. The Sieve client used a single storage-based data
structure to store the samples for an entire week.

10

100

105

110

115

120

125

1 MB

20
25
30
35
40
45
50
55
60
65

T
h
ro

u
g
h
p
u
t

(K
B

/s
)

10 KB

0 20 40 60 80 100

% requiring ABE

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

100 bytes

(a) Encryption speed: ABE and Ed448 in randomized counter mode.

4000

6000

8000

10000

12000

1 MB

50
100
150
200
250
300
350

T
h
ro

u
g
h
p
u
t

(K
B

/s
)

10 KB

0 20 40 60 80 100

% requiring ABE

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

100 bytes

(b) Encryption speed: ABE and AES in CTR mode.

Figure 5: Encryption throughput for Sieve, as a function of 1) the size of the data to symmetrically encrypt, 2) the
percentage of symmetric data encryptions which also require the ABE encryption of a metadata block, and 3) whether
the cipher is AES or key homomorphic Ed448. All experiments assume that each metadata block has five attributes, and
each ABE key has 10 attributes. Performance trends for decryption are similar.

The cost for the user to upload the first data point at
the beginning of a week was 0.56 seconds; the cost was
dominated by ABE encryption. Uploading subsequent
data points proceeded at the throughput of the symmetric
cipher, requiring 17.1 ms per data point for AES, and 38.5
ms for Ed448.

The mHealth server used the Sieve import daemon to
download user data. If the server had no cached GUIDs or
symmetric keys, then importing a week of data required
0.49 seconds with AES and 0.78 seconds with Ed448. In
this scenario, the server had to download the metadata
block, decrypt it with ABE, download the data block, and
then decrypt that block using a symmetric cipher. If the
server possessed cached GUIDs and symmetric keys, then
importing a week of data took only 135 ms with AES,
and 469 ms with Ed448.

Piwigo: The standard Piwigo client allows users to up-
load photos from local storage to the Piwigo web service.
We modified the client to upload data to a Sieve storage
provider, and we modified the server-side Piwigo code
to fetch user data via the Sieve import daemon. These
modifications required approximately 250 lines of new
Piwigo code.

To test the end-to-end performance, we uploaded a
375 KB photo which had three tags (location, date, and
username). If the Piwigo client used AES, the upload
required 0.57 seconds if a new, ABE-encrypted metadata
block had to be generated. If the client used a storage-
based list to avoid the creation of a new metadata block,
the upload cost was only 0.06 seconds.

As we explain in more detail in Section 5.2, current
Ed448 implementations are slower and less optimized
than equivalent AES implementations. Thus, when ap-
plications use Ed448, the upload time for a large object
is dominated by Ed448 encryption costs, regardless of
whether ABE costs are incurred. If the Piwigo client used
Ed448, the upload cost for a 375 KB photo was 6.1 sec-
onds if the client also had to generate a new metadata
block. By using storage-based data structures to avoid
ABE operations, the upload cost dropped to 4.2 seconds.
Note that, from the user’s perspective, uploads are asyn-
chronous. Thus, multi-second upload times are not in the
critical path of user-facing activities.

Download times for the Piwigo server demonstrated
similar trends. With cached GUIDs and symmetric keys,
downloading a photo required 0.14 seconds using AES,
and 5.9 seconds using Ed448. Without cached metadata,
a download required 0.44 seconds with AES, and 6.3
seconds with Ed448.

Server-side per-core throughput: The storage dae-
mon uses BerkeleyDB to store data objects. The dae-
mon logic is simple, meaning that the daemon can import
data at the raw speed of the BerkeleyDB write path. For
Open mHealth, the write speed was roughly 50 MB/s per
server core, which represented 16,500 users uploading a
week’s worth of data every second. For Piwigo, the write
speed was roughly 200 MB/s per core, corresponding to
550 photo uploads per second (assuming a photo size of
375 KB). Write throughput was better for Piwigo due to
BerkeleyDB handling large writes faster than small ones.

11

Operation Time

Generating 10 attribute key 0.46 sec
Generating 20 attribute key 0.64 sec
Re-encrypting a metadata block (10 attrs) 0.63 sec
Re-encrypting a metadata block (20 attrs) 0.91 sec
Re-key 100 KB data block 0.66 sec

Figure 6: Computational overheads for key generation
and revocation.

We also tested per-core throughput for the import dae-
mon. For Open mHealth using AES, a single core could
download and decrypt a week’s worth of data for 420
users in one minute; with Ed448, a core could import 70
users’ data in one minute. Given a photo size of 375 KB,
Piwigo was able to import 235 AES-encrypted photos or
14 Ed448-encrypted photos in one minute. In all experi-
ments, 20% of object imports required the download and
ABE-decryption of a metadata block. We believe that
20% is high, since an arbitrary number of objects can be
referenced by a single metadata block.

5.2 Microbenchmarks

Encryption speed: Sieve requires clients to symmetri-
cally encrypt each data object before uploading it. Some
fraction of uploads will also require clients to ABE-
encrypt a metadata block. Figure 5 quantifies the per-
formance of ABE and the symmetric ciphers. For 10 KB
objects, pure ABE encryption throughput is 1.1 KB/s,
whereas pure Ed448 throughput is 23.8 KB/s and pure
AES throughput is 43.5 KB/s. Although clients can per-
form data uploads asynchronously, in the background, the
computational costs for ABE are still quite high. Thus,
hybrid encryption (§3.4) and the optimizations from Sec-
tion 3.8 are crucial for minimizing the number of ABE
operations.

For 1 MB objects, the performance gap between AES
and Ed448 grows–AES throughput is 12 MB/s, but Ed448
throughput is only 120 KB/s. However, Ed448 is a new
elliptic curve, with immature implementations relative to
AES. We expect Ed448’s performance to improve as its
implementations receive more optimization effort.

Key generation and revocation: Figure 6 describes
the costs that Sieve pays for generating new ABE keys,
re-encrypting metadata blocks, and re-keying a 100 KB
data block. The creation of new ABE keys is rare, and
occurs only when a new service requests access permis-
sions, or an old service receives modified permissions
(possibly as the result of an epoch number increasing af-
ter a revocation (§3.6)). During revocation, the metadata

blocks associated with the revoked ABE key must be re-
encrypted; however, those metadata blocks will typically
point to a much larger number of raw data blocks (§3.8),
so the overall re-encryption cost of revocation is governed
by the speed with which raw data can be re-keyed.

Attribute matching: When the storage provider re-
ceives an access request from a third party, the storage
provider must locate the metadata blocks whose attributes
match those of the access request. Sieve makes the match-
ing process fast by storing metadata blocks in a database
that indexes those blocks by their attributes.

Due to space constraints, we omit a full description
of matching performance. However, the results are un-
surprising, since modern databases are good at building
indices. For example, in one experiment, we injected a
million metadata blocks into MongoDB; each metadata
block had 10 randomly selected attributes from a uni-
verse of 35 possible attributes. Then, we submitted access
queries in which each query contained 5 random attributes
joined with a random set of ANDs and ORs. Each query
took 0.13 ms to complete on average.

Secret-sharing: Sieve partitions the ABE master key
and the RSA signing key across multiple devices, ensuring
that a lost or stolen device will not store a full copy of
sensitive cryptographic information. The secret sharing
protocol is cheap: ignoring network latency, and assuming
that k = 2 and n = 5, splitting a 2048 bit object like an
RSA key requires 0.04 ms, and reconstructing that key
requires 0.09 ms.

6 Related Work

Untrusted servers: Browser extensions like Shad-
owCrypt [32] transparently encrypt the data that a browser
sends to unmodified cloud servers. Intentionally en-
crypted cloud stores like SUNDR [40], Depot [47], and
SPORC [25] provide stronger consistency semantics in
the face of server-side misbehavior; application logic runs
solely on the client-side, over cleartext data, with clients
exchanging encrypted data with servers. Other systems
that store encrypted data on servers and run application
logic on the client-side include BStore [20] and Dep-
Sky [13]. All of these systems prevent data leakage due to
server compromise or malice. However, these systems are
incompatible with applications that leverage server-side
computation to add value to raw user data. In contrast,
Sieve is totally compatible with server-side computation.

In CryptDB [56], a web application consists of clients,
an application server, and a back-end database. The
database contains only encrypted data. Using SQL-aware
encryption, the application server can execute queries

12

over the encrypted data without revealing cleartext to
the database. However, the application server does see
cleartext, and can leak user data if compromised. My-
lar [57] eliminates the need for an application server, but
restricts the encrypted server-side computation to key-
word searches. In both CryptDB and Mylar, applications
control how user data is shared. In Sieve, user data is
decoupled from applications, with users selectively dis-
closing individual objects to third parties.

Privly [5] allows users to upload encrypted data to
a storage server, and share hyperlinks to that data. The
hyperlinks can be embedded in sites like a Facebook page,
but the hyperlinks reveal no cleartext to the owner of
the embedding site. Users register their decryption keys
with Privly’s browser extension. Later, when the user
visits a page and her extension finds a Privly hyperlink,
the extension transparently fetches the encrypted data,
decrypts it, and rewrites the page’s HTML, replacing the
Privly link with the cleartext data. Privly does not support
the server-side computation that is enabled by Sieve.

ABE-protected storage: Persona [10], Priv.io [73],
and Cachet [52] use ABE to selectively expose encrypted
user data. In Persona and Priv.io, each user keeps her
data in private cloud storage; in Cachet, data is stored in
a peer-to-peer, distributed hash table. Unlike Sieve, these
systems cannot delegate access to arbitrary third party
services. Persona, Priv.io, and Cachet also trust each de-
vice for the lifetime of the system, whereas Sieve can
recover from the loss of individual devices. Finally, Sieve
provides a concrete revocation protocol that safeguards
user data if storage servers are compromised. Priv.io has
no revocation strategy, and Persona suggests re-keying
data, but does not provide a specific mechanism. Cachet
does implement revocation, but requires a trusted proxy
which must interpose on all decryption operations, even
in the common case that revocation is not underway [36].
Cachet’s revocation scheme also does not re-encrypt data
on storage providers; thus, objects that are encrypted with
revoked keys are vulnerable to subsequent compromises
of the storage provider.

Predicate encrypted storage: GORAM [46] allows
users to selectively share their cloud data with other users.
Clients place encrypted data on servers so that servers
cannot inspect it, and clients hide their access patterns
from servers using ORAM shuffling techniques [44]. Like
Sieve, GORAM tags data objects with attributes; unlike
Sieve, GORAM uses attribute-hiding predicate encryp-
tion [38, 61] to prevent storage servers from learning
attribute values.

GORAM’s use of oblivious RAM and predicate encryp-
tion provides stronger security than Sieve, but there is a

performance cost. To hide data access patterns from stor-
age servers, GORAM clients must perform O(polylog(n))
additional accesses. Hiding attribute values using predi-
cate encryption substantially increases GORAM’s cipher-
text size, and slows both encryption and decryption.

GORAM is also less user-friendly than Sieve. For
example, GORAM forces users to determine a priori the
maximum number of principals that can be mentioned in
access control lists; if this list changes, a user must re-
initialize her database. GORAM also has no revocation
scheme, and no protocol to recover from lost user devices.

Access delegation schemes: OAuth [37] is a widely
used protocol for sharing cloud data across different web
services. OAuth policies are written by web services, not
by users, so users lack true authority over their access
controls. OAuth also does not leverage cryptography to
protect user storage or enforce access policies. As a result,
users have no strong assurances about how their data is
exposed. OAuth is also vulnerable to various kinds of
data leaks [33, 64]. AAuth [65] is an extension of OAuth
which uses cryptography to delegate access to encrypted
data. However, AAuth relies on the existence of various
trusted parties to enforce access policies. In Sieve, users
generate their own policies and distrust the storage server
and third party applications. Sieve’s policy language is
also richer than AAuth’s fixed policy schemas.

The OAuth protocol generates a token that principals
use to access sensitive data. Web services define many
other types of “bearer tokens.” HTTP cookies [11] are
a classic example. Macaroons [14] improve upon cook-
ies, using chained HMACs to verify and attenuate capa-
bilities as a macaroon is passed between multiple par-
ties. Cookies and macaroons vouch for a principal’s
post-authorization status, whereas Sieve deals with the
authorization itself.

7 Conclusions

Sieve is a new access control system that allows users to
selectively expose their private cloud data to third party
web services. Sieve uses attribute-based encryption to
translate human-understandable access policies into cryp-
tographically enforceable restrictions. Unlike prior solu-
tions for encrypted storage, Sieve is compatible with rich,
legacy web applications that require server-side compu-
tation. Sieve is also the first ABE system that protects
against device loss and supports full revocation of both
data and metadata. As a proof of concept, we integrated
Sieve with two open-source web services, demonstrating
that Sieve is a practical approach for restricting access to
sensitive user data.

13

Acknowledgments

We thank our anonymous reviewers and our shepherd
Brad Karp for their useful feedback. This work was
partially supported by an NSF Graduate Research Fel-
lowship (Grant No. 2013135952) and by NSF awards
CNS-1053143 and CNS-1413920.

References

[1] Instagram. http://www.instagram.com.
[2] Lark. http://www.web.lark.com.
[3] Piwigo. http://piwigo.org/.
[4] Reddit. https://www.reddit.com.
[5] Share priv(ate).ly. https://priv.ly.
[6] Stack overflow. http://www.stackoverflow.

com.
[7] F. Aloul, S. Zahidi, and W. El-Hajj. Two factor

authentication using mobile phones. In Proceed-
ings of the ACS/IEEE International Conference on
Computer Systems and Applications, pages 641–644,
2009.

[8] Amazon. Put object. http://docs.aws.amazon.
com/AmazonS3/latest/API/RESTObjectPUT.
html.

[9] S. D. Applegate. Social engineering: Hacking the
wetware! Information Security Journal: A Global
Perspective, 18(1):40–46, Jan. 2009.

[10] R. Baden, A. Bender, N. Spring, B. Bhattachar-
jee, and D. Starin. Persona: an online social net-
work with user-defined privacy. ACM SIGCOMM
Computer Communication Review, 39(4):135–146,
2009.

[11] A. Barth. HTTP state management mechanism. RFC
6265, Internet Engineering Task Force, Apr. 2011.

[12] M. Bellare, V. T. Hoang, S. Keelveedhi, and P. Rog-
away. Efficient garbling from a fixed-key blockci-
pher. In Proceedings of the 34th IEEE Symposium
on Security and Privacy, pages 478–492, San Fran-
cisco, CA, May 2013.

[13] A. Bessani, M. Correia, B. Quaresma, F. André, and
P. Sousa. DepSky: dependable and secure storage
in a cloud-of-clouds. ACM Transactions on Storage,
9(4):12, 2013.

[14] A. Birgisson, J. G. Politz, U. Erlingsson, A. Taly,
M. Vrable, and M. Lentczner. Macaroons: Cookies
with contextual caveats for decentralized authoriza-
tion in the cloud. In Proceedings of the 2014 Annual
Network and Distributed System Security Sympo-
sium, San Diego, CA, Feb. 2014.

[15] D. Boneh, K. Lewi, H. Montgomery, and A. Raghu-

nathan. Key homomorphic PRFs and their appli-
cations. In Proceedings of the 33rd Annual Inter-
national Cryptology Conference (CRYPTO), pages
410–428. Santa Barbara, CA, Aug. 2013.

[16] D. Boneh, A. Sahai, and B. Waters. Functional
encryption: Definitions and challenges. In Proceed-
ings of the 8th IACR Theory of Cryptography Con-
ference (TCC), pages 253–273, Providence, RI, Mar.
2011.

[17] D. Brickley and L. Miller. FOAF vocabulary spec-
ification 0.99. http://xmlns.com/foaf/spec/,
Jan. 2014.

[18] J. Camenisch and A. Lysyanskaya. An efficient
system for non-transferable anonymous credentials
with optional anonymity revocation. In Proceed-
ings of the 20th Annual International Conference on
the Theory and Applications of Cryptographic Tech-
niques (EUROCRYPT), pages 93–118, Innsbruck,
Austria, May 2001.

[19] T. Chajed, J. Gjengset, J. van den Hooff, M. F.
Kaashoek, J. Mickens, R. Morris, and N. Zeldovich.
Amber: Decoupling user data from web applications.
In Proceedings of the 15th Workshop on Hot Topics
in Operating Systems (HotOS), Kartause Ittingen,
Switzerland, May 2015.

[20] R. Chandra, P. Gupta, and N. Zeldovich. Separating
web applications from user data storage with BStore.
In Proceedings of the USENIX Conference on Web
Application Development, pages 1–14, Boston, MA,
June 2010.

[21] R. Cyganiak, D. Wood, and M. Lanthaler. RDF 1.1
concepts and abstract syntax. https://www.w3.
org/TR/rdf11-concepts/, Feb. 2014.

[22] T. Dierks and E. Rescorla. The transport layer secu-
rity (TLS) protocol. RFC 5246, Network Working
Group, Aug. 2008.

[23] R. Dingledine, N. Mathewson, and P. Syverson. Tor:
The second-generation onion router. In Proceedings
of the 13th Usenix Security Symposium, pages 303–
320, San Diego, CA, Aug. 2004.

[24] C. Dwork. Differential privacy. In Encyclope-
dia of Cryptography and Security, pages 338–340.
Springer, 2011.

[25] A. J. Feldman, W. P. Zeller, M. J. Freedman, and
E. W. Felten. SPORC: Group collaboration using
untrusted cloud resources. In Proceedings of the
9th Symposium on Operating Systems Design and
Implementation (OSDI), Vancouver, Canada, Oct.
2010.

[26] S. Gaw and E. W. Felten. Password management
strategies for online accounts. In Proceedings of the

14

http://www.instagram.com
http://www.web.lark.com
http://piwigo.org/
https://www.reddit.com
https://priv.ly
http://www.stackoverflow.com
http://www.stackoverflow.com
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectPUT.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectPUT.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectPUT.html
http://xmlns.com/foaf/spec/
https://www.w3.org/TR/rdf11-concepts/
https://www.w3.org/TR/rdf11-concepts/

2nd Symposium On Usable Privacy and Security,
pages 44–55, Pittsburgh, PA, July 2006.

[27] C. Gentry. A fully homomorphic encryption scheme.
PhD thesis, Stanford University, 2009.

[28] D. K. Gifford, P. Jouvelot, M. Sheldon, and
J. O’Toole. Semantic file systems. In Proceedings
of the 13th ACM Symposium on Operating Systems
Principles (SOSP), pages 16–25, Pacific Grove, CA,
Oct. 1991.

[29] V. Goyal, O. Pandey, A. Sahai, and B. Waters.
Attribute-based encryption for fine-grained access
control of encrypted data. In Proceedings of the
13th ACM Conference on Computer and Communi-
cations Security (CCS), pages 89–98, Alexandria,
VA, Oct.–Nov. 2006.

[30] M. Green, A. Akinyele, and M. Rushanan. libfenc:
The functional encryption library. https://code.
google.com/p/libfenc/.

[31] M. Hamburg. Ed448-goldilocks, a new elliptic
curve. Cryptology ePrint Archive, Report 2015/625,
June 2015. http://eprint.iacr.org/.

[32] W. He, D. Akhawe, S. Jain, E. Shi, and D. Song.
ShadowCrypt: Encrypted web applications for ev-
eryone. In Proceedings of the 21st ACM Conference
on Computer and Communications Security (CCS),
pages 1028–1039, Scottsdale, AZ, Nov. 2014.

[33] E. Homakov. How we hacked Facebook with
OAuth2 and Chrome bugs, February 2013. http:
//homakov.blogspot.com/2013/02/hacking-
facebook-with-oauth2-and-chrome.html.

[34] Intuit. Mint. http://www.mint.com.
[35] J. Ioannidis, S. Ioannidis, A. Keromytis, and V. Pre-

velakis. Fileteller: Paying and getting paid for file
storage. In Proceedings of the 6th International Fi-
nancial Cryptography Conference, pages 282–299,
Southampton, Bermuda, Mar. 2002.

[36] S. Jahid, P. Mittal, and N. Borisov. EASiER:
Encryption-based access control in social networks
with efficient revocation. In Proceedings of the 6th
ACM Symposium on Information, Computer and
Communications Security (ASIACCS), pages 411–
415, Hong Kong, Mar. 2011.

[37] M. Jones and D. Hardt. The OAuth 2.0 authorization
framework: Bearer token usage. RFC 6750, Internet
Engineering Task Force, Oct. 2012.

[38] J. Katz, A. Sahai, and B. Waters. Predicate en-
cryption supporting disjunctions, polynomial equa-
tions, and inner products. In Proceedings of the
27th Annual International Conference on the Theory
and Applications of Cryptographic Techniques (EU-
ROCRYPT), pages 146–162. Istanbul, Turkey, Apr.

2008.
[39] J. Leskovec, N. Milic-Frayling, M. Grobelnik, and

J. Leskovec. Extracting summary sentences based
on the document semantic graph. Technical Report
MSR-TR-2005-07, Microsoft Research, Jan. 2005.

[40] J. Li, M. Krohn, D. Mazières, and D. Shasha. Secure
untrusted data repository (SUNDR). In Proceed-
ings of the 6th Symposium on Operating Systems
Design and Implementation (OSDI), pages 91–106,
San Francisco, CA, Dec. 2004.

[41] Y. Lindell and B. Pinkas. A Proof of Security of
Yao’s Protocol for Two-Party Computation. Journal
of Cryptology, 22(2):161–188, 2009.

[42] H. Lipmaa, P. Rogaway, and D. Wagner. Ctr-mode
encryption. In Proceedings of the 1st NIST Work-
shop on Modes of Operation, Baltimore, MD, Oct.
2000.

[43] D. Litzenberger. PyCrypto: The Python cryptog-
raphy toolkit, June 2014. https://www.dlitz.
net/software/pycrypto/.

[44] J. R. Lorch, B. Parno, J. W. Mickens, M. Raykova,
and J. Schiffman. Shroud: ensuring private access
to large-scale data in the data center. In Proceedings
of the 11th USENIX Conference on File and Storage
Technologies (FAST), pages 199–213, San Jose, CA,
Feb. 2013.

[45] B. Lynn. On the implementation of pairing-based
cryptosystems. PhD thesis, Stanford University,
2007.

[46] M. Maffei, G. Malavolta, M. Reinert, and
D. Schröder. Privacy and access control for out-
sourced personal records. In Proceedings of the
36th IEEE Symposium on Security and Privacy, San
Jose, CA, May 2015.

[47] P. Mahajan, S. Setty, S. Lee, A. Clement, L. Alvisi,
M. Dahlin, and M. Walfish. Depot: Cloud stor-
age with minimal trust. In Proceedings of the 9th
Symposium on Operating Systems Design and Imple-
mentation (OSDI), Vancouver, Canada, Oct. 2010.

[48] A. Miyaji, M. Nakabayashi, and S. Takano. New
explicit conditions of elliptic curve traces for FR-
reduction. IEICE Transactions on Fundamentals
of Electronics, Communications and Computer Sci-
ences, E84-A(5):1234–1243, 2001.

[49] MongoDB. MongoDB. https://www.mongodb.
org/.

[50] M. Naor, B. Pinkas, and O. Reingold. Distributed
pseudo-random functions and KDCs. In Proceed-
ings of the 18th Annual International Conference
on the Theory and Applications of Cryptographic
Techniques (EUROCRYPT), pages 327–346, Prague,

15

https://code.google.com/p/libfenc/
https://code.google.com/p/libfenc/
http://eprint.iacr.org/
http://homakov.blogspot.com/2013/02/hacking-facebook-with-oauth2-and-chrome.html
http://homakov.blogspot.com/2013/02/hacking-facebook-with-oauth2-and-chrome.html
http://homakov.blogspot.com/2013/02/hacking-facebook-with-oauth2-and-chrome.html
http://www.mint.com
https://www.dlitz.net/software/pycrypto/
https://www.dlitz.net/software/pycrypto/
https://www.mongodb.org/
https://www.mongodb.org/

Czech Republic, May 1999.
[51] I. Neamtiu, J. Bardin, M. R. Uddin, D.-Y. Lin, and

P. Bhattacharya. Improving cloud availability with
on-the-fly schema updates. In Proceedings of the
19th International Conference on Management of
Data, pages 24–34, 2013.

[52] S. Nilizadeh, S. Jahid, P. Mittal, N. Borisov, and
A. Kapadia. Cachet: A decentralized architecture for
privacy-preserving social networking with caching.
In Proceedings of the 8th International Conference
on Emerging Networking Experiments and Technolo-
gies (CoNEXT), pages 337–348, Nice, France, Dec.
2012.

[53] Oracle. BerkeleyDB. http://www.oracle.
com/technetwork/database/database-
technologies/berkeleydb/overview/index.
html.

[54] OWASP. Cross-site scripting (XSS).
https://www.owasp.org/index.php/Cross-
site_Scripting_(XSS).

[55] R. A. Popa, J. R. Lorch, D. Molnar, H. J. Wang,
and L. Zhuang. Enabling security in cloud storage
SLAs with CloudProof. In Proceedings of the 2011
USENIX Annual Technical Conference, Portland,
OR, June 2011.

[56] R. A. Popa, C. M. S. Redfield, N. Zeldovich, and
H. Balakrishnan. CryptDB: Protecting confidential-
ity with encrypted query processing. In Proceedings
of the 23rd ACM Symposium on Operating Systems
Principles (SOSP), pages 85–100, Cascais, Portugal,
Oct. 2011.

[57] R. A. Popa, E. Stark, J. Helfer, S. Valdez, N. Zel-
dovich, M. F. Kaashoek, and H. Balakrishnan. Build-
ing web applications on top of encrypted data us-
ing Mylar. In Proceedings of the 11th Sympo-
sium on Networked Systems Design and Implemen-
tation (NSDI), pages 157–172, Seattle, WA, Apr.
2014.

[58] I. Rae, E. Rollins, J. Shute, S. Sodhi, and R. Vin-
gralek. Online, asynchronous schema change in F1.
Proceedings of the VLDB Endowment, 6(11):1045–
1056, 2013.

[59] E. A. Rundensteiner, A. Koeller, and X. Zhang.
Maintaining data warehouses over changing infor-
mation sources. Communications of the ACM,
43(6):57–62, 2000.

[60] A. Shamir. How to share a secret. Communications
of the ACM, 22(11):612–613, 1979.

[61] E. Shen, E. Shi, and B. Waters. Predicate privacy in
encryption systems. In Proceedings of the 6th IACR
Theory of Cryptography Conference (TCC), pages

457–473, San Francisco, CA, Mar. 2009.
[62] R. P. Singh, C. Shen, A. Phanishayee, A. Kansal,

and R. Mahajan. A case for ending monolithic apps
for connected devices. In Proceedings of the 15th
Workshop on Hot Topics in Operating Systems (Ho-
tOS), Kartause Ittingen, Switzerland, May 2015.

[63] C. A. Soules and G. R. Ganger. Toward automatic
context-based attribute assignment for semantic file
systems. Technical Report CMU-PDL-04-105, Par-
allel Data Laboratory, Carnegie Mellon University,
June 2004.

[64] S.-T. Sun and K. Beznosov. The devil is in the
(implementation) details: an empirical analysis of
OAuth SSO systems. In Proceedings of the 19th
ACM Conference on Computer and Communica-
tions Security (CCS), pages 378–390, Raleigh, NC,
Oct. 2012.

[65] A. Tassanaviboon and G. Gong. OAuth and ABE
based authorization in semi-trusted cloud comput-
ing: AAuth. In Proceedings of the 2nd Interna-
tional Workshop on Data Intensive Computing in
the Clouds, pages 41–50, 2011.

[66] Tides Center. Open mHealth. http://www.
openmhealth.org/.

[67] V. Toubiana, A. Narayanan, D. Boneh, H. Nis-
senbaum, and S. Barocas. Adnostic: Privacy pre-
serving targeted advertising. In Proceedings of the
17th Annual Network and Distributed System Secu-
rity Symposium, San Diego, CA, Feb.–Mar. 2010.

[68] M. S. Turan, E. Barker, W. Burr, and L. Chen. Rec-
ommendation for password-based key derivation.
Technical Report SP 800-132, NIST, Dec. 2010.

[69] X. S. Wang, A. Balasubramanian, A. Krishnamurthy,
and D. Wetherall. Demystifying page load perfor-
mance with WProf. In Proceedings of the 10th
Symposium on Networked Systems Design and Im-
plementation (NSDI), pages 473–485, Lombard, IL,
Apr. 2013.

[70] Y. Wang, K. Streff, and S. Raman. Smartphone
security challenges. IEEE Computer, 45(12):52–58,
Dec. 2012.

[71] Y. Xu, Z. Musgrave, B. Noble, and M. Bailey. Bob-
tail: Avoiding long tails in the cloud. In Proceedings
of the 10th Symposium on Networked Systems De-
sign and Implementation (NSDI), pages 329–341,
Lombard, IL, Apr. 2013.

[72] Yahoo. Flickr. https://flickr.com.
[73] L. Zhang and A. Mislove. Building confederated

web-based services with Priv.io. In Proceedings of
the 1st ACM Conference on Online Social Networks,
pages 189–200, 2013.

16

http://www.oracle.com/technetwork/database/database-technologies/berkeleydb/overview/index.html
http://www.oracle.com/technetwork/database/database-technologies/berkeleydb/overview/index.html
http://www.oracle.com/technetwork/database/database-technologies/berkeleydb/overview/index.html
http://www.oracle.com/technetwork/database/database-technologies/berkeleydb/overview/index.html
https://www.owasp.org/index.php/Cross-site_Scripting_(XSS)
https://www.owasp.org/index.php/Cross-site_Scripting_(XSS)
http://www.openmhealth.org/
http://www.openmhealth.org/
https://flickr.com

	Introduction
	Security Goals
	Design
	Usage Model
	Overview of ABE
	Assigning Attributes to User Data
	Uploading Data to the Storage Provider
	Defining and Enforcing Access Policies
	Key Revocation
	Protecting Against Device Loss
	Minimizing ABE Overheads
	Relabeling
	Discussion

	Implementation
	Evaluation
	Case Studies
	Microbenchmarks

	Related Work
	Conclusions

